精品一区二区免费在线观看_国产精品久久久久久av福利软件_97成人精品区在线播放_国内成人精品一区

C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標系與參數方程
在極坐標系下,已知圓O:和直線
(1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數,不等式恒成立,試求實數的取值范圍.

查看答案和解析>>

C.選修4-4:坐標系與參數方程
在極坐標系下,已知圓O:和直線
(1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數,不等式恒成立,試求實數的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯;≥4,故A錯;由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯.故選C.

查看答案和解析>>

定義域為R的函數滿足,且當時,,則當時,的最小值為( )

A B C D

 

查看答案和解析>>

.過點作圓的弦,其中弦長為整數的共有  (  )    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

 

一、選擇題:

1.解析:B.由6ec8aac122bd4f6e6ec8aac122bd4f6e能夠推出6ec8aac122bd4f6e;反之,由6ec8aac122bd4f6e只能推出6ec8aac122bd4f6e6ec8aac122bd4f6e,而不能推出6ec8aac122bd4f6e6ec8aac122bd4f6e.故“6ec8aac122bd4f6e”是“6ec8aac122bd4f6e6ec8aac122bd4f6e”的必要不充分條件,故選B.

評析:有關充要條件的判定問題,概念性較強,進行判斷時,必須緊扣概念.一方面,要正確理解充要條件本身的概念,進行雙向推理,準確判斷;另一方面,還要注意根據具體問題所涉及到的數學概念來思考.本題中,弄清并集和交集概念中“或”與“且”的關系顯得很重要.

2.解析:B.∵△=6ec8aac122bd4f6e.要使函數6ec8aac122bd4f6e的一個零點在6ec8aac122bd4f6e內,必須滿足條件:6ec8aac122bd4f6e,即6ec8aac122bd4f6e

6ec8aac122bd4f6e,∴實數k的取值范圍為(2,3).

3.解析:D.化簡復數6ec8aac122bd4f6e可得6ec8aac122bd4f6e,∴6ec8aac122bd4f6e

故選D.

4.解析:B 先作出直線A1B與平面BC1D1所成角,再通過解三角形求出其正切值.如圖,連結6ec8aac122bd4f6e6ec8aac122bd4f6e 于6ec8aac122bd4f6e,連結6ec8aac122bd4f6e.由6ec8aac122bd4f6e6ec8aac122bd4f6e,又6ec8aac122bd4f6e,得6ec8aac122bd4f6e,所以6ec8aac122bd4f6e就是直線A1B與平面BC1D1所成角.在直角6ec8aac122bd4f6e中,求得6ec8aac122bd4f6e,故選B.

評析:平面的斜線與平面所成的角,就是這條斜線與它在該平面上

6ec8aac122bd4f6e的射影所成的銳角,根據題目的條件作出斜線在該平面上的射影

是實現解題的關鍵,而作射影的關鍵則是作出平面的垂線,要注

意面面垂直的性質在作平面的垂線時的應用.

5.解析: A.特值法.取B=0,A=1,C=-1,則M(1,6ec8aac122bd4f6e),

N(1,-6ec8aac122bd4f6e), ∴6ec8aac122bd4f6e= x1x2+y1y2 =-2.故選A .

      6.解析  B.設點6ec8aac122bd4f6e是函數6ec8aac122bd4f6e上的任意一點,點6ec8aac122bd4f6e關于點6ec8aac122bd4f6e的對稱點為6ec8aac122bd4f6e,則6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e上,

6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,即6ec8aac122bd4f6e.故選B.

7.解析: C.圖象法.由6ec8aac122bd4f6e的圖象可得,6ec8aac122bd4f6e6ec8aac122bd4f6e上是增函數,在6ec8aac122bd4f6e上是減函數,又6ec8aac122bd4f6e是偶函數,∴6ec8aac122bd4f6e

6ec8aac122bd4f6e,解得6ec8aac122bd4f6e.故選C.

8.解析:B,由6ec8aac122bd4f6e,得:6ec8aac122bd4f6e,即6ec8aac122bd4f6e

解之得6ec8aac122bd4f6e,由于6ec8aac122bd4f6e,故6ec8aac122bd4f6e;選B

9.解析: B.如果四塊均不同色,則有6ec8aac122bd4f6e種涂法;如果有且僅有兩塊同色,它們必是相對的兩塊,有6ec8aac122bd4f6e種涂法;如果兩組相對的兩塊分別同色,則有6ec8aac122bd4f6e種涂法.根據分類計數原理,得到涂色方法種數為6ec8aac122bd4f6e(種),故選B.

10.解析:選D.①②③易于判斷其真。6ec8aac122bd4f6e.

6ec8aac122bd4f6e,即曲線上任一點P(x,y)在單位圖6ec8aac122bd4f6e外,(點(±1,0)在圓上),

則S>π?12

  評析:f(x,y)=f(x,-y)6ec8aac122bd4f6e曲線f(x,y)=0,關于x軸對稱;

       f(x,y)=f(-x, y)6ec8aac122bd4f6e曲線f(x,y)=0,關于y軸對稱;

       f(x,y)=f(-x, -y)6ec8aac122bd4f6e曲線f(x,y)=0,關于原點對稱。

 

6ec8aac122bd4f6e11.解析:D,在EF上任意取一點M,直線6ec8aac122bd4f6e與M確定一個平面,

這個平面與CD有且僅有1個交點N, 當M取不同的位置就確

定不同的平面,從而與CD有不同的交點N,而直線MN與這

3條異面直線都有交點的.如右圖:

評析:本題主要考查立體幾何中空間直線相交問題,考查學生

的空間想象能力。

 

 

 

12.解析:C.P(X=8)=6ec8aac122bd4f6e,P(X=7)=6ec8aac122bd4f6e

P(X=6)=6ec8aac122bd4f6e, 所以P(X≥6)=6ec8aac122bd4f6e

即線路信息暢通的概率為6ec8aac122bd4f6e,故選C.

二、填空題:

13.解析:6ec8aac122bd4f6e.由6ec8aac122bd4f6e,得6ec8aac122bd4f6e,即6ec8aac122bd4f6e,又由6ec8aac122bd4f6e,得6ec8aac122bd4f6e,∴6ec8aac122bd4f6e

于是,6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e

14. 解析:6ec8aac122bd4f6e.如圖,6ec8aac122bd4f6e過點6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e在點6ec8aac122bd4f6e處取得最小值,6ec8aac122bd4f6e點在直線

6ec8aac122bd4f6e上,6ec8aac122bd4f6e,∴6ec8aac122bd4f6e

評析:簡單的線性規劃問題,其約束條件是平面上的一個

多邊形閉區域,或者是向某一方向無限延展的半閉區域,而目標函數一般在邊界的頂點處取得最值.解題時通常運用圖解法,根據題意畫出圖形,從圖形中尋求思路、獲得答案,體現了數形結合的思想方法.

15.解析:f(x)=x2+2x+1 .設f(x)=ax2+bx+c (a≠0),則△=b24ac=0,f′(x)=2ax+b=2x+2.

    ∴6ec8aac122bd4f6e,故 f(x)=x2+2x+1 .

16.解析:橢圓6ec8aac122bd4f6e與雙曲線6ec8aac122bd4f6e的焦距相等.由橢圓6ec8aac122bd4f6e與雙曲線6ec8aac122bd4f6e的焦距相等,分析橢圓和雙曲線的標準方程中參數之間的關系,運用類比推理的方法,不難得到推廣后的一個命題為:橢圓6ec8aac122bd4f6e與雙曲線6ec8aac122bd4f6e的焦距相等.

評析:推廣命題有多種方法,其中類比推理是一種常用方法.值得指出的是,本題的答案不唯一,例如,我們還可以得到推廣后的更具一般性的命題:橢圓6ec8aac122bd4f6e與雙曲線6ec8aac122bd4f6e 6ec8aac122bd4f6e的焦距相等.

三、解答題:

17.解析:(Ⅰ)6ec8aac122bd4f6e,在6ec8aac122bd4f6e中,由余弦定理,

6ec8aac122bd4f6e

6ec8aac122bd4f6e,                      6ec8aac122bd4f6e(2分)

6ec8aac122bd4f6e6ec8aac122bd4f6e,                         

6ec8aac122bd4f6e得,6ec8aac122bd4f6e

6ec8aac122bd4f6e,從而6ec8aac122bd4f6e                  6ec8aac122bd4f6e(4分)

由題意可知6ec8aac122bd4f6e,∴6ec8aac122bd4f6e,                                 6ec8aac122bd4f6e(5分)

又∵△BCD是6ec8aac122bd4f6e,∴6ec8aac122bd4f6e6ec8aac122bd4f6e時,則6ec8aac122bd4f6e,由6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e時,則6ec8aac122bd4f6e,由6ec8aac122bd4f6e,∴6ec8aac122bd4f6e

綜上,6ec8aac122bd4f6e.                                            6ec8aac122bd4f6e(7分)

(Ⅱ)由(1)知6ec8aac122bd4f6e,∴向量6ec8aac122bd4f6e6ec8aac122bd4f6e的夾角為6ec8aac122bd4f6e,     6ec8aac122bd4f6e(9分)

6ec8aac122bd4f6e6ec8aac122bd4f6e時,6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e.                   6ec8aac122bd4f6e(10分)

6ec8aac122bd4f6e6ec8aac122bd4f6e時,6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e.                    6ec8aac122bd4f6e(12分)

評析:本題考查平面向量和解三角形的基礎知識,考查分類討論的思想方法.求解時容易發生的錯誤是:(1)將條件“△BCD是直角三形”當作“△BCD是以角6ec8aac122bd4f6e是直角三形”來解,忽略對6ec8aac122bd4f6e為直角的情況的討論;(2)在計算6ec8aac122bd4f6e時,將6ec8aac122bd4f6e當作向量6ec8aac122bd4f6e6ec8aac122bd4f6e的夾角,忽略了確定兩個向量的夾角時必須將它們的起點移到一起.暴露出思維的不嚴謹和概念理解的缺陷,在復習中要引起重視,加強訓練.

18.解析: (Ⅰ)做了三次實驗,至少兩次實驗成功的情形有兩種:

    (1)恰有兩次成功,其概率為6ec8aac122bd4f6e;               6ec8aac122bd4f6e(2分)

    (2)三次都成功,其概率為6ec8aac122bd4f6e.                       6ec8aac122bd4f6e(4分)

    故得所求之概率為6ec8aac122bd4f6e.   6ec8aac122bd4f6e(6分)

    (Ⅱ)在第4次成功之前,共做了6次試驗,其中三次成功、三次失敗,且恰有兩次連續失敗,其各種可能情況的種數為6ec8aac122bd4f6e.                   6ec8aac122bd4f6e(10分)

  因此,所求之概率為6ec8aac122bd4f6e.                          6ec8aac122bd4f6e(12分)

19.解析:(Ⅰ)∵SB=SC,AB=AC,M為BC中點,

∴SM⊥BC,AM⊥BC.        6ec8aac122bd4f6e(2分)

由棱錐的側面積等于底面積的2倍,即

6ec8aac122bd4f6e

6ec8aac122bd4f6e.                6ec8aac122bd4f6e(4分)

   (Ⅱ)作正三棱錐的高SG,則G為正三角形ABC的中心,G在AM上,6ec8aac122bd4f6e

∵SM⊥BC,AM⊥BC,

∴∠SMA是二面角S―BC―A的平面角.6ec8aac122bd4f6e(6分)

在Rt△SGM中,∵6ec8aac122bd4f6e∴∠SMA=∠SMG=60°,

即二面角S―BC―A的大小為60°.  6ec8aac122bd4f6e(8分)

(Ⅲ)∵△ABC的邊長是3,

6ec8aac122bd4f6e,  6ec8aac122bd4f6e(10分)

6ec8aac122bd4f6e.             6ec8aac122bd4f6e(12分)

評析計算二面角大小,既可以根據二面角的定義,通過作出二面角的平面角,再解三角形求角,也可以運用向量方法,轉化為計算兩個平面的法向量的夾角.做題時要考慮前后聯系,注意選擇簡便的方法.

 

 

20.解析:(Ⅰ)證明:假設存在一個實數,使{an}是等比數列,則有6ec8aac122bd4f6e,即

6ec8aac122bd4f6e2=6ec8aac122bd4f6e26ec8aac122bd4f6e矛盾.

所以{an}不是等比數列.                        6ec8aac122bd4f6e(3分)

   (Ⅱ)證明:∵6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e由上式知6ec8aac122bd4f6e

6ec8aac122bd4f6e故當6ec8aac122bd4f6e數列{bn}是以6ec8aac122bd4f6e為首項,6ec8aac122bd4f6e為公比的等比數列.

                                             6ec8aac122bd4f6e(7分)

   (Ⅲ)當6ec8aac122bd4f6e由(Ⅱ)得6ec8aac122bd4f6e于是

6ec8aac122bd4f6e  當6ec8aac122bd4f6e時,6ec8aac122bd4f6e,從而6ec8aac122bd4f6e上式仍成立.

要使對任意正整數n , 都有6ec8aac122bd4f6e

6ec8aac122bd4f6e       6ec8aac122bd4f6e(9分)

6ec8aac122bd4f6e

當n為正奇數時,6ec8aac122bd4f6e當n為正偶數時,6ec8aac122bd4f6e

6ec8aac122bd4f6e  于是可得6ec8aac122bd4f6e

綜上所述,存在實數6ec8aac122bd4f6e,使得對任意正整數6ec8aac122bd4f6e,都有6ec8aac122bd4f6e

6ec8aac122bd4f6e的取值范圍為6ec8aac122bd4f6e                         6ec8aac122bd4f6e(12分)

評析:(1)求解等差數列與等比數列的有關問題,定義、公式和性質是主要工具,要注意抓住基本量───首項和公差(公比),方程思想、化歸思想和運算能力是考查的重點;(2)正面求解,直接證明難以突破時,可以考慮從反面入手,運用正難則反的思想來處理,反證法就是從反面入手的一種重要的推理方法,一般地,以否定的形式出現的數學命題,我們常用反證法來實現證明。

21.解析:(Ⅰ)6ec8aac122bd4f6e,……(1分)

∵函數6ec8aac122bd4f6e6ec8aac122bd4f6e上單調遞增,在6ec8aac122bd4f6e上單調遞減,

6ec8aac122bd4f6e6ec8aac122bd4f6e處取得極大值,有6ec8aac122bd4f6e,         6ec8aac122bd4f6e(3分)

6ec8aac122bd4f6e,這就是所求的6ec8aac122bd4f6e之間的關系式.     6ec8aac122bd4f6e(4分)

   (Ⅱ)當6ec8aac122bd4f6e6ec8aac122bd4f6e處取得極小值,有6ec8aac122bd4f6e,即6ec8aac122bd4f6e,          ① 

又由(Ⅰ)有:6ec8aac122bd4f6e                                               ②聯立①和②,解得6ec8aac122bd4f6e.                   6ec8aac122bd4f6e(5分)

此時,6ec8aac122bd4f6e,在6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e處確可取得極小值,故6ec8aac122bd4f6e,   6ec8aac122bd4f6e(7分)

從而6ec8aac122bd4f6e.                      6ec8aac122bd4f6e(8分)

   (Ⅲ)由(Ⅰ)得:6ec8aac122bd4f6e

6ec8aac122bd4f6e

它在6ec8aac122bd4f6e上為減函數,在6ec8aac122bd4f6e為增函數.  6ec8aac122bd4f6e(10分)

若存在實數6ec8aac122bd4f6e,使6ec8aac122bd4f6e6ec8aac122bd4f6e上為單調函數,則有6ec8aac122bd4f6e,得6ec8aac122bd4f6e.又因為6ec8aac122bd4f6e,有6ec8aac122bd4f6e,這與6ec8aac122bd4f6e矛盾.

所以滿足題意的實數6ec8aac122bd4f6e不存在.      6ec8aac122bd4f6e(12分)

評析: 導數是研究函數性質的一個有力工具,運用導數求函數的單調區間和極值,可轉化為解不等式6ec8aac122bd4f6e和方程6ec8aac122bd4f6e,顯得非常簡捷且易于操作.值得注意的是:6ec8aac122bd4f6e6ec8aac122bd4f6e取得極值的必要條件,因此,在(Ⅱ)中,由6ec8aac122bd4f6e求出6ec8aac122bd4f6e,必須檢驗.

22.解析:(Ⅰ)由題意可得6ec8aac122bd4f6e ,       6ec8aac122bd4f6e(2分)

6ec8aac122bd4f6e,得6ec8aac122bd4f6e,∴6ec8aac122bd4f6e6ec8aac122bd4f6e(4分)

∴橢圓6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e.                       6ec8aac122bd4f6e(4分)

   (Ⅱ)由(Ⅰ)可得橢圓6ec8aac122bd4f6e的左焦點為6ec8aac122bd4f6e,左準線為6ec8aac122bd4f6e,      

連結6ec8aac122bd4f6e,則6ec8aac122bd4f6e,設6ec8aac122bd4f6e,則6ec8aac122bd4f6e,

6ec8aac122bd4f6e,                           6ec8aac122bd4f6e(6分)

化簡得6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e.                     6ec8aac122bd4f6e(8分)

   (Ⅲ)將曲線6ec8aac122bd4f6e向右平移2個單位,得曲線6ec8aac122bd4f6e的方程為: 6ec8aac122bd4f6e,其焦點為6ec8aac122bd4f6e,準線為6ec8aac122bd4f6e,對稱軸為6ec8aac122bd4f6e軸.     6ec8aac122bd4f6e(10分)

設直線6ec8aac122bd4f6e的方程為6ec8aac122bd4f6e,代入y2=4x,得y2-4ty-4=0.

由題意,可設6ec8aac122bd4f6e(6ec8aac122bd4f6e),6ec8aac122bd4f6e(6ec8aac122bd4f6e),則y1y2=-4,

且有6ec8aac122bd4f6e                                6ec8aac122bd4f6e(12分)

6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e三點共線.                 6ec8aac122bd4f6e(14分)

評析:證明三點共線的方法很多,這里運用向量共線定理來證,體現了平面向量與解析幾何知識的交匯和平面向量知識在解析幾何中的應用.近幾年的高考突出了在知識網絡的交匯點處設計命題的要求,平面向量與解析幾何知識的綜合考查成為一個不衰的熱點,復習中要引起重視.

 


同步練習冊答案
精品一区二区免费在线观看_国产精品久久久久久av福利软件_97成人精品区在线播放_国内成人精品一区
3atv一区二区三区| 7777女厕盗摄久久久| 亚洲视频狠狠干| 91蝌蚪porny成人天涯| 玉米视频成人免费看| 欧美婷婷六月丁香综合色| 婷婷国产v国产偷v亚洲高清| 91精品国产91热久久久做人人| 美女一区二区三区| 国产日产欧产精品推荐色| 成人短视频下载| 亚洲影院免费观看| 日韩欧美一级片| 国产精品亚洲一区二区三区妖精| 国产精品久久久久婷婷二区次| 色悠悠久久综合| 午夜伦理一区二区| 久久色在线观看| 99国产欧美久久久精品| 亚洲va国产天堂va久久en| 日韩欧美一区二区免费| 成人性生交大合| 亚洲自拍与偷拍| 精品久久久网站| 99久久婷婷国产精品综合| 亚洲国产成人av| 久久亚洲精华国产精华液 | 不卡在线视频中文字幕| 一区二区三区日韩欧美精品| 欧美一区二区在线播放| 国产999精品久久| 亚洲国产精品久久人人爱蜜臀 | 久久97超碰色| 亚洲视频资源在线| 日韩一区二区视频在线观看| 成人免费的视频| 天堂在线一区二区| 亚洲国产精品av| 欧美老年两性高潮| 高清成人在线观看| 婷婷成人激情在线网| 国产日产亚洲精品系列| 欧美日韩午夜在线视频| 国产成人免费在线| 亚洲成av人在线观看| 久久精品一区二区| 欧美三级资源在线| 粉嫩高潮美女一区二区三区 | 日韩天堂在线观看| 97se狠狠狠综合亚洲狠狠| 蜜桃av一区二区三区电影| 国产精品久久久久影院老司| 欧美一卡二卡三卡四卡| 91在线观看美女| 狠狠色丁香久久婷婷综| 亚洲一区二区美女| 欧美激情艳妇裸体舞| 91精品国产综合久久国产大片| 99久久99久久精品免费看蜜桃| 美女一区二区视频| av亚洲精华国产精华| 亚洲免费观看高清完整版在线观看熊 | 日韩欧美国产综合在线一区二区三区| 99国产精品久久久久| 久久精品久久99精品久久| 一区二区成人在线| 国产日韩影视精品| 欧美一级片在线观看| 欧美性猛交一区二区三区精品| 国产成人99久久亚洲综合精品| 日本成人在线不卡视频| 一区二区在线观看视频在线观看| 国产亚洲美州欧州综合国| 91麻豆精品国产自产在线| 色天使久久综合网天天| 成人丝袜18视频在线观看| 久久99国产精品久久99果冻传媒| 五月天婷婷综合| 又紧又大又爽精品一区二区| 中文字幕不卡在线| 精品国产乱码久久久久久1区2区| 欧美日韩国产精选| 色香色香欲天天天影视综合网| 国产夫妻精品视频| 久久国产生活片100| 日韩av一二三| 亚洲成人激情社区| 亚洲激情五月婷婷| 日韩理论电影院| 国产精品色呦呦| 国产日韩欧美麻豆| 久久久九九九九| 亚洲精品在线免费观看视频| 日韩视频在线你懂得| 91麻豆精品国产91久久久久久久久| 91福利国产成人精品照片| 91视频国产观看| 99精品久久只有精品| 成人激情视频网站| 成人动漫一区二区在线| 国产成人在线视频网站| 国产精品综合在线视频| 精品在线一区二区三区| 麻豆国产一区二区| 美女视频免费一区| 久久国产欧美日韩精品| 久久精品噜噜噜成人av农村| 美女脱光内衣内裤视频久久网站| 日韩1区2区3区| 免费人成在线不卡| 久久99精品国产麻豆不卡| 九色综合狠狠综合久久| 国精产品一区一区三区mba桃花| 久久精品国产网站| 国内精品国产成人| 国产精品自在欧美一区| 国产成人精品影视| 成人精品gif动图一区| 99久久精品一区| 一本到不卡免费一区二区| 欧洲亚洲国产日韩| 欧美日韩国产区一| 日韩欧美一级特黄在线播放| 26uuu久久天堂性欧美| 国产亚洲精品超碰| 中文字幕一区二区三区四区不卡| 国产精品成人免费精品自在线观看| 17c精品麻豆一区二区免费| 一区二区三区中文字幕电影 | 亚洲成人动漫在线观看| 日韩黄色免费网站| 精品一区二区三区香蕉蜜桃 | 99国产精品视频免费观看| 在线观看亚洲精品| 91精品国产日韩91久久久久久| 日韩欧美123| 国产日韩成人精品| 亚洲欧美另类综合偷拍| 亚洲成av人**亚洲成av**| 免费成人美女在线观看.| 国产乱子轮精品视频| eeuss鲁片一区二区三区| 色素色在线综合| 欧美一区二区日韩| 日本一区二区在线不卡| 亚洲免费在线观看视频| 日本欧美在线观看| 国产成人av电影在线| 91黄色在线观看| 日韩欧美色综合| 国产精品嫩草影院av蜜臀| 亚洲一卡二卡三卡四卡| 久久机这里只有精品| 成人精品亚洲人成在线| 欧美日韩一区二区在线观看| 婷婷六月综合亚洲| 久久黄色级2电影| heyzo一本久久综合| 宅男在线国产精品| 欧美国产一区视频在线观看| 亚洲一区二区三区激情| 国产揄拍国内精品对白| 色视频欧美一区二区三区| 91精品婷婷国产综合久久性色| 成人av网在线| 51精品秘密在线观看| 国产午夜亚洲精品不卡| 亚洲小少妇裸体bbw| 国产一区美女在线| 欧洲av在线精品| 久久综合国产精品| 亚洲综合免费观看高清完整版在线| 久久99精品国产麻豆不卡| 一本久久精品一区二区| 亚洲精品一区二区精华| 一区二区三区国产精华| 黄色日韩网站视频| 欧美伊人久久久久久午夜久久久久| 精品精品欲导航| 亚洲制服欧美中文字幕中文字幕| 久久精品免费观看| 在线一区二区观看| 国产日韩欧美精品一区| 日韩精品亚洲专区| 99re免费视频精品全部| 精品国产露脸精彩对白| 亚洲午夜精品网| 成人免费高清在线观看| 日韩免费高清av| 亚洲一区视频在线| 成人午夜免费av| 日韩精品一区二区三区中文精品 | 亚洲视频一区在线| 国产在线不卡一卡二卡三卡四卡| 欧美性色综合网| 国产精品久久久久久妇女6080| 美女在线一区二区| 欧美日韩国产综合视频在线观看| 亚洲国产精品高清| 国产一区视频导航|