題目列表(包括答案和解析)
(本題共3小題,滿分18分。第1小題滿分4分,第2小題滿分7分,第3小題7分)
對定義在
上,并且同時滿足以下兩個條件的函數
稱為
函數.
① 對任意的
,總有
;
② 當
時,總有
成立.
已知函數
與
是定義在
上的函數.
(1)試問函數
是否為
函數?并說明理由;
(2)若函數
是
函數,求實數
的值;
(3)在(2)的條件下,是否存在實數
,使方程
恰有兩解?若存在,求出實數
的取值范圍;若不存在,請說明理由.
在平面直角坐標系
中,已知
分別是橢圓
的左、右焦點,橢圓
與拋物線
有一個公共的焦點,且過點
.
![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)設點
是橢圓
在第一象限上的任一點,連接
,過
點作斜率為
的直線
,使得
與橢圓
有且只有一個公共點,設直線
的斜率分別為
,
,試證明
為定值,并求出這個定值;
(III)在第(Ⅱ)問的條件下,作
,設
交
于點
,
證明:當點
在橢圓上移動時,點
在某定直線上.
已知二次函數
滿足條件:
①
;②
的最小值為
。
(1)求函數
的解析式;
(2)設數列
的前
項積為
,且
,求數列
的通項公式;
(3)在(2)的條件下,若
是
與
的等差中項,試問數列
中第幾項的值最小?求出這個最小值。
在平面直角坐標系
中,已知
分別是橢圓
的左、右焦點,橢圓
與拋物線
有一個公共的焦點,且過點
.![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)設點
是橢圓
在第一象限上的任一點,連接
,過
點作斜率為
的直線
,使得
與橢圓
有且只有一個公共點,設直線
的斜率分別為
,
,試證明
為定值,并求出這個定值;
(III)在第(Ⅱ)問的條件下,作
,設
交
于點
,
證明:當點
在橢圓上移動時,點
在某定直線上.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com