題目列表(包括答案和解析)
已知
,
是橢圓![]()
左右焦點,它的離心率
,且被直線
所截得的線段的中點的橫坐標為![]()
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設
是其橢圓上的任意一點,當
為鈍角時,求
的取值范圍。
【解析】解:因為第一問中,利用橢圓的性質由
得
所以橢圓方程可設為:
,然后利用
得
得
橢圓方程為![]()
第二問中,當
為鈍角時,
,
得![]()
所以
得![]()
解:(Ⅰ)由
得
所以橢圓方程可設為:![]()
3分
得
得
橢圓方程為
3分
(Ⅱ)當
為鈍角時,
,
得
3分
所以
得![]()
(本小題滿分14分)
設
,橢圓方程為
,拋物線方程為
.如圖6所示,過點
作
軸的平行線,與拋物線在第一象限的交點為
,已知拋物線在點
的切線經過橢圓的右焦點
.
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設
分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點
,使得
為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標).
![]()
(本小題滿分14分)設
,橢圓方程為
,拋物線方程為
.如圖6所示,過點
作
軸的平行線,與拋物線在第一象限的交點為
,已知拋物線在點
的切線經過橢圓的右焦點
.
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設
分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點
,使得
為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標).
![]()
(08年廣東卷)(本小題滿分14分)設
,橢圓方程為
,拋物線方程為
.如圖6所示,過點
作
軸的平行線,與拋物線在第一象限的交點為
,已知拋物線在點
的切線經過橢圓的右焦點
.
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設
分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點
,使得
為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標).
![]()
已知橢圓C:
的兩個焦點為F1、F2,點P在橢圓C上,且|PF1|=
,
|PF2|=
, PF1⊥F1F2.
(1)求橢圓C的方程;(6分)
(2)若直線L過圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點,且A、B關于點M對稱,求直線L的方程.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com