題目列表(包括答案和解析)
解:能否投中,那得看拋物線與籃圈所在直線是否有交點。因為函數(shù)
的零點是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開口向下的,所以投不中。
某城市出租汽車的起步價為10元,行駛路程不超出4km,則按10元的標準收租車費
若行駛路程超出4km,則按每超出lkm加收2元計費(超出不足1km的部分按lkm計).從這個城市的民航機場到某賓館的路程為15km.某司機常駕車在機場與此賓館之間接送旅客,由于行車路線的不同以及途中停車時間要轉(zhuǎn)換成行車路程(這個城市規(guī)定,每停車5分鐘按lkm路程計費),這個司機一次接送旅客的行車路程ξ是一個隨機變量,
(1)他收旅客的租車費η是否也是一個隨機變量?如果是,找出租車費η與行車路程ξ的關(guān)系式;
(2)已知某旅客實付租車費38元,而出租汽車實際行駛了15km,問出租車在途中因故停車累計最多幾分鐘?這種情況下,停車累計時間是否也是一個隨機變量?
| 剎車時的車速(km/h) | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
| 剎車距離(m) | 0 | 0.3 | 1.0 | 2.1 | 3.6 | 5.5 | 7.8 |
已知等比數(shù)列
中,
,且
,公比
,(1)求
;(2)設(shè)
,求數(shù)列
的前
項和![]()
【解析】第一問,因為由題設(shè)可知![]()
又
故![]()
或
,又由題設(shè)
從而![]()
第二問中,![]()
當
時,
,
時![]()
故
時,
時,![]()
分別討論得到結(jié)論。
由題設(shè)可知![]()
又
故![]()
或
,又由題設(shè)
![]()
從而
……………………4分
(2)![]()
當
時,
,
時
……………………6分
故
時,
……8分
時,![]()
![]()
![]()
……………………10分
綜上可得
![]()
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關(guān)系式的運用。
(1)問中∵
,∴
,…………………1分
∵
,得到三角關(guān)系是
,結(jié)合
,解得。
(2)由
,解得
,
,結(jié)合二倍角公式
,和
,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②聯(lián)立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
將①代入②中,可得
③ …………………4分
將③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,從而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
綜上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
綜上可得
…………………12分
(若用
,又∵
∴
,
已知正項數(shù)列
的前n項和
滿足:
,
(1)求數(shù)列
的通項
和前n項和
;
(2)求數(shù)列
的前n項和
;
(3)證明:不等式
對任意的
,
都成立.
【解析】第一問中,由于
所以![]()
兩式作差
,然后得到![]()
從而
得到結(jié)論
第二問中,
利用裂項求和的思想得到結(jié)論。
第三問中,![]()
![]()
又![]()
結(jié)合放縮法得到。
解:(1)∵
∴![]()
∴![]()
∴
∴
………2分
又∵正項數(shù)列
,∴
∴
又n=1時,![]()
∴
∴數(shù)列
是以1為首項,2為公差的等差數(shù)列……………3分
∴
…………………4分
∴
…………………5分
(2)
…………………6分
∴![]()
…………………9分
(3)![]()
…………………12分
又![]()
,![]()
∴不等式
對任意的
,
都成立.
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com