題目列表(包括答案和解析)
已知函數(shù)
的最小值為0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若對(duì)任意的
有
≤
成立,求實(shí)數(shù)
的最小值;
(Ⅲ)證明
(
).
【解析】(1)解:
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">
![]()
由
,得![]()
當(dāng)x變化時(shí),
,
的變化情況如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
極小值 |
|
因此,
在
處取得最小值,故由題意
,所以![]()
(2)解:當(dāng)
時(shí),取
,有
,故
時(shí)不合題意.當(dāng)
時(shí),令
,即![]()
![]()
令
,得![]()
①當(dāng)
時(shí),
,
在
上恒成立。因此
在
上單調(diào)遞減.從而對(duì)于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當(dāng)
時(shí),
,對(duì)于
,
,故
在
上單調(diào)遞增.因此當(dāng)取
時(shí),
,即
不成立.
故
不合題意.
綜上,k的最小值為
.
(3)證明:當(dāng)n=1時(shí),不等式左邊=
=右邊,所以不等式成立.
當(dāng)
時(shí),![]()
![]()
![]()
在(2)中取
,得
,
從而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
綜上,
,![]()
| 3 |
| x |
| 3 |
| x |
| 1 |
| x |
| 1 |
| x |
| 3 | 2x2•
| ||||
| 3 | 4 |
| 3 | 4 |
| 3 |
| x |
2x2•
|
| 6x |
| 3 |
| x |
| |||
| 2 |
6•
|
3
|
| 6 | 324 |
已知![]()
(1)求函數(shù)
在
上的最小值
(2)對(duì)一切的
恒成立,求實(shí)數(shù)a的取值范圍
(3)證明對(duì)一切
,都有
成立
【解析】第一問中利用
當(dāng)
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)![]()
,即
時(shí),
,![]()
![]()
第二問中,
,則
設(shè)
,
則
,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因?yàn)閷?duì)一切
,
恒成立,
第三問中問題等價(jià)于證明
,
,
由(1)可知
,
的最小值為
,當(dāng)且僅當(dāng)x=
時(shí)取得
設(shè)
,
,則
,易得![]()
。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切
,都有
成立
解:(1)
當(dāng)
時(shí),
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)![]()
,即
時(shí),
,![]()
…………4分
(2)
,則
設(shè)
,
則
,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因?yàn)閷?duì)一切
,
恒成立,
…………9分
(3)問題等價(jià)于證明
,
,
由(1)可知
,
的最小值為
,當(dāng)且僅當(dāng)x=
時(shí)取得
設(shè)
,
,則
,易得![]()
。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切
,都有
成立
| 3 |
| x |
| 3 |
| x |
| 1 |
| x |
| 1 |
| x |
| 3 | 2x2•
| ||||
| 3 | 4 |
| 3 | 4 |
| 3 |
| x |
2x2•
|
| 6x |
| 3 |
| x |
| |||
| 2 |
6•
|
3
|
| 6 | 324 |
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com