題目列表(包括答案和解析)
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本試題主要考查了向量的數量積的運算,以及兩角和差的三角函數關系式的運用。
(1)問中∵
,∴
,…………………1分
∵
,得到三角關系是
,結合
,解得。
(2)由
,解得
,
,結合二倍角公式
,和
,代入到兩角和的三角函數關系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②聯立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
將①代入②中,可得
③ …………………4分
將③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,從而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
綜上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
綜上可得
…………………12分
(若用
,又∵
∴
,
在△ABC中,a、b、c分別是角A、B、C的對邊,cosB=
.
⑴ 若cosA=-
,求cosC的值; ⑵
若AC=
,BC=5,求△ABC的面積.
【解析】第一問中sinB=
=
, sinA=
=![]()
cosC=cos(180°-A-B)=-cos(A+B) =sinA.sinB-cosA·cosB
=
×
-(-
)×
=![]()
第二問中,由
=
+
-2AB×BC×cosB得 10=
+25-8AB
解得AB=5或AB=3綜合得△ABC的面積為
或![]()
解:⑴ sinB=
=
, sinA=
=
,………………2分
∴cosC=cos(180°-A-B)=-cos(A+B) ……………………3分
=sinA.sinB-cosA·cosB ……………………4分
=
×
-(-
)×
=
……………………6分
⑵ 由
=
+
-2AB×BC×cosB得 10=
+25-8AB
………………7分
解得AB=5或AB=3, ……………………9分
若AB=5,則S△ABC=
AB×BC×sinB=
×5×5×
=
………………10分
若AB=3,則S△ABC=
AB×BC×sinB=
×5×3×
=
……………………11分
綜合得△ABC的面積為
或![]()
已知點
為圓
上的動點,且
不在
軸上,
軸,垂足為
,線段
中點
的軌跡為曲線
,過定點![]()
任作一條與
軸不垂直的直線
,它與曲線
交于
、
兩點。
(I)求曲線
的方程;
(II)試證明:在
軸上存在定點
,使得
總能被
軸平分
【解析】第一問中設
為曲線
上的任意一點,則點
在圓
上,
∴
,曲線
的方程為![]()
第二問中,設點
的坐標為
,直線
的方程為
, ………………3分
代入曲線
的方程
,可得 ![]()
∵
,∴![]()
確定結論直線
與曲線
總有兩個公共點.
然后設點
,
的坐標分別
,
,則
,
要使
被
軸平分,只要
得到。
(1)設
為曲線
上的任意一點,則點
在圓
上,
∴
,曲線
的方程為
. ………………2分
(2)設點
的坐標為
,直線
的方程為
, ………………3分
代入曲線
的方程
,可得
,……5分
∵
,∴
,
∴直線
與曲線
總有兩個公共點.(也可根據點M在橢圓
的內部得到此結論)
………………6分
設點
,
的坐標分別
,
,則
,
要使
被
軸平分,只要
,
………………9分
即
,
, ………………10分
也就是
,
,
即
,即只要
………………12分
當
時,(*)對任意的s都成立,從而
總能被
軸平分.
所以在x軸上存在定點
,使得
總能被
軸平分
一自來水廠用蓄水池通過管道向所管轄區域供水.某日凌晨,已知蓄水池有水9千噸,水廠計劃在當日每小時向蓄水池注入水2千噸,且每
小時通過管道向所管轄區域供水
千噸.
(1)多少小時后,蓄水池存水量最少?
(2)當蓄水池存水量少于3千噸時,供水就會出現緊張現象,那么當日出現這種情況的時間有多長?
【解析】第一問中(1)設
小時后,蓄水池有水
千噸.依題意,
當
,即
(小時)時,蓄水池的水量最少,只有1千噸
第二問依題意,
解得:![]()
解:(1)設
小時后,蓄水池有水
千噸.………………………………………1分
依題意,
…………………………………………4分
當
,即
(小時)時,蓄水池的水量最少,只有1千噸. ………2分
(2)依題意,
………………………………………………3分
解得:
. …………………………………………………………………3分
所以,當天有8小時會出現供水緊張的情況
| 1 |
| 4 |
| 3 |
| 4 |
| 5 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
| 5 |
| 4 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com