題目列表(包括答案和解析)
(8分)在T℃時,水的離子積為KW=10—12,在此溫度下,將pH=a的鹽酸溶液Va L與pH=b的Ba(OH)2溶液Vb L混合:
(1)由數據可以判斷T 25(填 “大于” 、“小于”、 “等于”);理由是: 。
(2)若所得混合液為中性,且a+b=10,則Va︰Vb為 ;
(3)若所得混合液的pH=10,且a=2,b=12則Va︰Vb為 。
(本題8分)
已知函數
在
處取得極值,并且它的圖象與直線
在點
處相切.
(1)求函數
的解析式;
(2)過點
是否存在另一條與曲線
相切的直線.若存在,則求出此切線的方程;若不存在,則說明理由.
(理)(本題8分)甲、乙、丙三人進行某項比賽,每局有兩人參加,沒有平局,在一局比賽中,甲勝乙的概率為
,甲勝丙的概率為
,乙勝丙的概率為
,比賽的規則是先由甲和乙進行第一局的比賽,然后每局的獲勝者與未參加此局比賽的人進行下一局的比賽,在比賽中,有人獲勝兩局就算取得比賽的勝利,比賽結束.
(1)求只進行兩局比賽,甲就取得
勝利的概率;
(2)求只進行兩局比賽,比賽就結束的概率;
(3)求甲取得比賽勝利的概率.
20、(文)(本小題8分)甲、乙兩人做定點投籃,投籃者若投中則繼續投籃,否則由對方投籃,第一次甲投籃,已知甲、乙每次投籃命中的概率分別為
、
,且甲、乙投籃是否命中互不影響.
(1)求第三次由乙投籃的概率;
(2)求前4次投籃中各投兩次的概率.
(理)(本題8分)甲、乙、丙三人進行某項比賽,每局有兩人參加,沒有平局,在一局比賽中,甲勝乙的概率為
,甲勝丙的概率為
,乙勝丙的概率為
,比賽的規則是先由甲和乙進行第一局的比賽,然后每局的獲勝者與未參加此局比賽的人進行下一局的比賽,在比賽中,有人獲勝兩局就算取得比賽的勝利,比賽結束.
(1)求只進行兩局比賽,甲就取得勝利的概率;
(2)求只進行兩局比賽,比賽就結束的概率;
(3)求甲取得比賽勝利的概率.
20、(文)(本小題8分)甲、乙兩人做定點投籃,投籃者若投中則繼續投籃,否則由對方投籃,第一次甲投籃,已知甲、乙每次投籃命中的概率分別為
、
,且甲、乙投籃是否命中互不影響.
(1)求第三次由乙投籃的概率;
(2)求前4次投籃中各投兩次的概率.
已知m>1,直線
,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點
時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A![]()
、△B![]()
的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數m的取值范圍.[
【解析】第一問中因為直線
經過點
(
,0),所以
=
,得
.又因為m>1,所以
,故直線的方程為![]()
第二問中設
,由
,消去x,得
,
則由
,知
<8,且有![]()
由題意知O為![]()
的中點.由
可知
從而
,設M是GH的中點,則M(
).
由題意可知,2|MO|<|GH|,得到范圍
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com