題目列表(包括答案和解析)
設拋物線
:
(
>0)的焦點為
,準線為
,
為
上一點,已知以
為圓心,
為半徑的圓
交
于
,
兩點.
(Ⅰ)若
,
的面積為
,求
的值及圓
的方程;
(Ⅱ)若
,
,
三點在同一條直線
上,直線
與
平行,且
與
只有一個公共點,求坐標原點到
,
距離的比值.
【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關系、點到直線距離公式、線線平行等基礎知識,考查數形結合思想和運算求解能力.
【解析】設準線
于
軸的焦點為E,圓F的半徑為
,
![]()
則|FE|=
,
=
,E是BD的中點,
(Ⅰ) ∵
,∴
=
,|BD|=
,
設A(
,
),根據拋物線定義得,|FA|=
,
∵
的面積為
,∴
=
=
=
,解得
=2,
∴F(0,1), FA|=
, ∴圓F的方程為:
;
(Ⅱ) 解析1∵
,
,
三點在同一條直線
上, ∴
是圓
的直徑,
,
由拋物線定義知
,∴
,∴
的斜率為
或-
,
∴直線
的方程為:
,∴原點到直線
的距離
=
,
設直線
的方程為:
,代入
得,
,
∵
與
只有一個公共點,
∴
=
,∴
,
∴直線
的方程為:
,∴原點到直線
的距離
=
,
∴坐標原點到
,
距離的比值為3.
解析2由對稱性設
,則![]()
點
關于點
對稱得:![]()
得:
,直線![]()
切點![]()
直線![]()
坐標原點到
距離的比值為![]()
| 10 |
| OC |
| OA |
| OB |
| 3 | 2 |
| 10 |
(08年山東卷理)(本小題滿分14分)
如圖,設拋物線方程為x2=2py(p>0),M為 直線y=-2p上任意一點,過M引拋物線的切線,切點分別為A,B.
(Ⅰ)求證:A,M,B三點的橫坐標成等差數列;
(Ⅱ)已知當M點的坐標為(2,-2p)時,
,求此時拋物線的方程;
(Ⅲ)是否存在點M,使得點C關于直線AB的對稱點D在拋物線
上,其中,點C滿足
(O為坐標原點).若存在,求出所有適合題意的點M的坐標;若不存在,請說明理由.
![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com