題目列表(包括答案和解析)
已知函數
.(
)
(1)若
在區間
上單調遞增,求實數
的取值范圍;
(2)若在區間
上,函數
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用
在區間
上單調遞增,則
在區間
上恒成立,然后分離參數法得到
,進而得到范圍;第二問中,在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.然后求解得到。
解:(1)
在區間
上單調遞增,
則
在區間
上恒成立. …………3分
即
,而當
時,
,故
.
…………5分
所以
.
…………6分
(2)令
,定義域為
.
在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.
∵
…………9分
① 若
,令
,得極值點
,
,
當
,即
時,在(
,+∞)上有
,此時
在區間
上是增函數,并且在該區間上有
,不合題意;
當
,即
時,同理可知,
在區間
上遞增,
有
,也不合題意;
…………11分
② 若
,則有
,此時在區間
上恒有
,從而
在區間
上是減函數;
要使
在此區間上恒成立,只須滿足![]()
,
由此求得
的范圍是
. …………13分
綜合①②可知,當
時,函數
的圖象恒在直線
下方.
已知函數
,(
),![]()
(1)若曲線
與曲線
在它們的交點(1,c)處具有公共切線,求a,b的值
(2)當
時,若函數
的單調區間,并求其在區間(-∞,-1)上的最大值。
【解析】(1)
,
∵曲線
與曲線
在它們的交點(1,c)處具有公共切線
∴
,![]()
∴![]()
(2)令
,當
時,![]()
令
,得![]()
時,
的情況如下:
|
x |
|
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
|
|
|
|
所以函數
的單調遞增區間為
,
,單調遞減區間為![]()
當
,即
時,函數
在區間
上單調遞增,
在區間
上的最大值為
,
當
且
,即
時,函數
在區間
內單調遞增,在區間
上單調遞減,
在區間
上的最大值為![]()
當
,即a>6時,函數
在區間
內單調遞贈,在區間
內單調遞減,在區間
上單調遞增。又因為![]()
所以
在區間
上的最大值為
。
、已知函數
(其中
)的圖象如圖所示,函數
,
(1)求函數
圖像的對稱軸方程;
(2)當![]()
時,求函數
的最大值和最小值及相應的
的值;
(3)若方程
在區間
上只有一個實數根,求實數
的取值集合.![]()
(本小題滿分14分)已知函數
.
(1)試討論函數
在
的單調性;
(2)若
,求函數
在
上的最大值和最小值;
(3)若函數
在區間
上只有一個零點,求
的取值范圍。
、已知函數
(其中
)的圖象如圖所示,函數
,
(1)求函數
圖像的對稱軸方程;
(2)當
時,求函數
的最大值和最小值及相應的
的值;
(3)若方程
在區間
上只有一個實數根,求實數
的取值集合.
![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com