題目列表(包括答案和解析)
已知
,
是橢圓![]()
左右焦點,它的離心率
,且被直線
所截得的線段的中點的橫坐標為![]()
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設
是其橢圓上的任意一點,當
為鈍角時,求
的取值范圍。
【解析】解:因為第一問中,利用橢圓的性質由
得
所以橢圓方程可設為:
,然后利用
得
得
橢圓方程為![]()
第二問中,當
為鈍角時,
,
得![]()
所以
得![]()
解:(Ⅰ)由
得
所以橢圓方程可設為:![]()
3分
得
得
橢圓方程為
3分
(Ⅱ)當
為鈍角時,
,
得
3分
所以
得![]()
已知
是橢圓的左、右焦點,O為坐標原點,點P
在橢圓上,線段
與y軸的交點M滿足![]()
(Ⅰ) 求橢圓的標準方程;
(Ⅱ) 圓O是以
為直徑的圓,直線
:
與圓相切,并與橢圓交于不同的兩點
,當
,且滿足
時,求直線
的方程。
已知
是橢圓的左、右焦點,O為坐標原點,點P
在橢圓上,線段
與y軸的交點M滿足![]()
(Ⅰ) 求橢圓的標準方程;
(Ⅱ) 圓O是以
為直徑的圓,直線
:
與圓相切,并與橢圓交于不同的兩點
,當
,且滿足
時,求直線
的方程。
一、選擇題(4′×10=40分)
題號
1
2
3
4
5
6
7
8
9
10
答案
D
D
B
C
D
C
A
A
B
A
三、填空題(4′×4=16分)
11.
12.
13.
14.
三、解答題(共44分)
15.①解:原不等式可化為:
………………………2′
作根軸圖:
………………………4′
可得原不等式的解集為:
………………………6′
②解:直線
的斜率
………………………2′
∵直線
與該直線垂直
∴
………………………4′
則
的方程為:
………………………5′
即
為所求………………………6′
16.解:∵
∴
,
且
………………………1′
于是
………………………3′
………………………4′
………………………5′

當且僅當:
即
………………………6′
時,
………………………7′
17.解:將
代入
中變形整理得:
………………………2′
首先
且
………………………3′
設

由題意得:
解得:
或
(舍去)………………………5′
由弦長公式得:
………………………7′
18.解①設雙曲線的實半軸,虛半軸分別為
,

由題得:
∴
………………………1′
于是可設雙曲線方程為:
………………………2′
將點
代入可得:
,
∴該雙曲線的方程為:
………………………4′
②直線方程可化為:
,
則它所過定點
代入雙曲線方程:
得:

∴
………………………6′
又由
得
,
∴
,
或
,
…………7′
∴
∴
……………………8′
19.解:①設中心
關于
的對稱點為
,
則
解得:
∴
,又點
在左準線
上,
軸
∴
的方程為:
……………………4′
②設
、
、
、
∵
、
、
成等差數列,
∴
,
即:
亦:
∴
……………………6′
∴
由
得
……………………8′
∴
, ∴
又由
代入上式得:
∴
,
∴
……………………9′
∴
,
,
∴橢圓的方程為:
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com