題目列表(包括答案和解析)
(本小題滿分14分)
已知函數
。
(1)證明:![]()
(2)若數列
的通項公式為
,求數列
的前
項和
;w.w.w.k.s.5.u.c.o.m
![]()
(3)設數列
滿足:
,設
,
若(2)中的
滿足對任意不小于2的正整數
,
恒成立,
試求
的最大值。
(本小題滿分14分)已知
,點
在
軸上,點
在
軸的正半軸,點
在直線
上,且滿足
,
. w.w.w.k.s.5.u.c.o.m
![]()
(Ⅰ)當點
在
軸上移動時,求動點
的軌跡
方程;
(本小題滿分14分)設函數![]()
(1)求函數
的單調區間;
(2)若當
時,不等式
恒成立,求實數
的取值范圍;w.w.w.k.s.5.u.c.o.m
(本小題滿分14分)
已知
,其中
是自然常數,![]()
(1)討論
時,
的單調性、極值;w.w.w.k.s.5.u.c.o.m
![]()
(2)求證:在(1)的條件下,
;
(3)是否存在實數
,使
的最小值是3,若存在,求出
的值;若不存在,說明理由.
(本小題滿分14分)
設數列
的前
項和為
,對任意的正整數
,都有
成立,記
。
(I)求數列
的通項公式;
(II)記
,設數列
的前
項和為
,求證:對任意正整數
都有
;
(III)設數列
的前
項和為
。已知正實數
滿足:對任意正整數
恒成立,求
的最小值。
一 選擇題
(1)B (2)C (3)B (4)B (5)D (6)A
(7)A (8)C (9)D (10)C (11)B (12)C
二 填空題
(13)
(14)
(15)
(16)1
三、解答題
(17)本小題主要考查指數和對數的性質以及解方程的有關知識. 滿分12分.
解:(老課程).files\image159.png)
(老課程).files\image161.png)
(無解). 所以(老課程).files\image165.png)
(18)本小題主要考查同角三角函數的基本關系式、二倍角公式等基礎知識以及三角恒等變形的能力. 滿分12分.
解:原式(老課程).files\image167.png)
因為 (老課程).files\image169.png)
所以 原式
.
因為
為銳角,由
.
所以 原式(老課程).files\image177.png)
因為
為銳角,由(老課程).files\image179.png)
所以 原式(老課程).files\image177.png)
(19)本小題主要考查等差數列的通項公式,前n項和公式等基礎知識,根據已知條件列方程以及運算能力.滿分12分.
解:設等差數列
的公差為d,由
及已知條件得
, ①
②
由②得
,代入①有(老課程).files\image189.png)
解得
當
舍去.
因此 (老課程).files\image195.png)
故數列
的通項公式(老課程).files\image198.png)
(老課程).files\image200.png)
(20)本小題主要考查把實際問題抽象為數學問題,應用不等式等基礎知識和方法解決問題的能力. 滿分12分.
解:設矩形溫室的左側邊長為a m,后側邊長為b m,則(老課程).files\image202.png)
蔬菜的種植面積
(老課程).files\image204.png)
(老課程).files\image206.png)
所以(老課程).files\image208.png)
當(老課程).files\image210.png)
答:當矩形溫室的左側邊長為40m,后側邊長為20m時,蔬菜的種植面積最大,最大種植面積為648m2.
(21)本小題主要考查兩個平面垂直的性質、二面角等有關知識,以有邏輯思維能力和空間想象能力. 滿分12分.