題目列表(包括答案和解析)
三棱柱
中,側棱與底面垂直,
,
,
分別是
,
的中點.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
平面
;
(Ⅲ)求三棱錐![]()
的體積.
![]()
【解析】第一問利連結
,
,∵M,N是AB,
的中點∴MN//
.
又∵
平面
,∴MN//平面
.
----------4分
⑵中年∵三棱柱ABC-A1B1C1中,側棱與底面垂直,∴四邊形
是正方形.∴
.∴
.連結
,
.
∴
,又N中
的中點,∴
.
∵
與
相交于點C,∴MN
平面
. --------------9分
⑶中由⑵知MN是三棱錐M-
的高.在直角
中,
,
∴MN=
.又
.
.得到結論。
⑴連結
,
,∵M,N是AB,
的中點∴MN//
.
又∵
平面
,∴MN//平面
.
--------4分
⑵∵三棱柱ABC-A1B1C1中,側棱與底面垂直,
∴四邊形
是正方形.∴
.
∴
.連結
,
.
∴
,又N中
的中點,∴
.
∵
與
相交于點C,∴MN
平面
. --------------9分
⑶由⑵知MN是三棱錐M-
的高.在直角
中,
,
∴MN=
.又
.
![]()
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
如圖,在正三棱柱ABC-A1B1C1中,底面ABC為正三角形,M、N、G分別是棱CC1、AB、BC的中點,且
.
(Ⅰ)求證:CN∥平面AMB1;
(Ⅱ)求證: B1M⊥平面AMG.
![]()
【解析】本試題主要是考查了立體幾何匯總線面的位置關系的運用。第一問中,要證CN∥平面AMB1;,只需要確定一條直線CN∥MP,既可以得到證明
第二問中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到線線垂直,B1M⊥AG,結合線面垂直的判定定理和性質定理,可以得證。
解:(Ⅰ)設AB1 的中點為P,連結NP、MP ………………1分
![]()
![]()
∵CM
,NP
,∴CM
NP, …………2分
∴CNPM是平行四邊形,∴CN∥MP …………………………3分
∵CN 平面AMB1,MP奐 平面AMB1,∴CN∥平面AMB1…4分
(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,
∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分
∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,
設:AC=2a,則![]()
…………………………8分
同理,
…………………………………9分
∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,
![]()
………………………………10分
![]()
如圖,在三棱柱
中,
側面
,
為棱
上異于
的一點,
,已知
,求:
(Ⅰ)異面直線
與
的距離;
(Ⅱ)二面角
的平面角的正切值.
【解析】第一問中,利用建立空間直角坐標系
解:(I)以B為原點,
、
分別為Y,Z軸建立空間直角坐標系.由于,![]()
![]()
在三棱柱
中有
,
設![]()
![]()
![]()
又
側面
,故
. 因此
是異面直線
的公垂線,則
,故異面直線
的距離為1.
(II)由已知有
故二面角
的平面角
的大小為向量
與
的夾角.
![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com