題目列表(包括答案和解析)
已知函數(shù)
的最小值為0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若對(duì)任意的
有
≤
成立,求實(shí)數(shù)
的最小值;
(Ⅲ)證明
(
).
【解析】(1)解:
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">
![]()
由
,得![]()
當(dāng)x變化時(shí),
,
的變化情況如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
極小值 |
|
因此,
在
處取得最小值,故由題意
,所以![]()
(2)解:當(dāng)
時(shí),取
,有
,故
時(shí)不合題意.當(dāng)
時(shí),令
,即![]()
![]()
令
,得![]()
①當(dāng)
時(shí),
,
在
上恒成立。因此
在
上單調(diào)遞減.從而對(duì)于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當(dāng)
時(shí),
,對(duì)于
,
,故
在
上單調(diào)遞增.因此當(dāng)取
時(shí),
,即
不成立.
故
不合題意.
綜上,k的最小值為
.
(3)證明:當(dāng)n=1時(shí),不等式左邊=
=右邊,所以不等式成立.
當(dāng)
時(shí),![]()
![]()
![]()
在(2)中取
,得
,
從而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
綜上,
,![]()
在回歸分析中,通過模型由解釋變量計(jì)算預(yù)報(bào)變量時(shí),應(yīng)注意什么問題?
9 f(a)f(b)≤0解析:若根在開區(qū)間(a,b)上有f(a)f(b)<0;而當(dāng)根是端點(diǎn)a或b時(shí),f(a)f(b)=0,因此當(dāng)f(x)=0在區(qū)間[a,b]上有實(shí)根時(shí)f(a)f(b)≤0
在四棱錐
中,
平面
,底面
為矩形,
.
(Ⅰ)當(dāng)
時(shí),求證:
;
(Ⅱ)若
邊上有且只有一個(gè)點(diǎn)
,使得
,求此時(shí)二面角
的余弦值.
![]()
【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,![]()
![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,
………………2分
又
,得證。
第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》
要使
,只要![]()
所以
,即
………6分
由此可知
時(shí),存在點(diǎn)Q使得![]()
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得![]()
由此知道a=2, 設(shè)平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
解:(Ⅰ)當(dāng)
時(shí),底面ABCD為正方形,![]()
![]()
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,
又![]()
………………3分
(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,
![]()
則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分
設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使
,只要![]()
所以
,即
………6分
由此可知
時(shí),存在點(diǎn)Q使得![]()
當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得
由此知道a=2,
設(shè)平面POQ的法向量為![]()
,所以
平面PAD的法向量![]()
則
的大小與二面角A-PD-Q的大小相等所以![]()
因此二面角A-PD-Q的余弦值為![]()
5.A解析:因?yàn)楹瘮?shù)有0,1,2三個(gè)零點(diǎn),可設(shè)函數(shù)為f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax
因此b=-3a,又因?yàn)楫?dāng)x>2時(shí)f(x)>0所以a>0,因此b<0
對(duì)于回歸直線方程
,當(dāng)
時(shí),
的估計(jì)值為
5.A解析:因?yàn)楹瘮?shù)有0,1,2三個(gè)零點(diǎn),可設(shè)函數(shù)為f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax
因此b=-3a,又因?yàn)楫?dāng)x>2時(shí)f(x)>0所以a>0,因此b<0
在15個(gè)村莊中有7個(gè)村莊交通不方便,現(xiàn)從中任意選10個(gè),用X表示這10個(gè)村莊中交通方便的村莊數(shù),若
,則a= .
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com