題目列表(包括答案和解析)
(本小題滿分12分)
有編號為
,
,…
的10個零件,測量其直徑(單位:cm),得到下面數據:
![]()
其中直徑在區間[1.48,1.52]內的零件為一等品。
(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;
(Ⅱ)從一等品零件中,隨機抽取2個.
(ⅰ)用零件的編號列出所有可能的抽取結果;
(ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數及事件發生的概率等基礎知識,考查數據處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數據可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)=
=
.
(Ⅱ)(i)解:一等品零件的編號為
.從這6個一等品零件中隨機抽取2個,所有可能的結果有:
,
,
,
,
,
,
共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:
,
,共有6種.
所以P(B)=
.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=
,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
(本小題滿分12分)
有編號為
,
,…
的10個零件,測量其直徑(單位:cm),得到下面數據:
![]()
其中直徑在區間[1.48,1.52]內的零件為一等品。
(Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;
(Ⅱ)從一等品零件中,隨機抽取2個.
(ⅰ)用零件的編號列出所有可能的抽取結果;
(ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數及事件發生的概率等基礎知識,考查數據處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分
【解析】(Ⅰ)解:由所給數據可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)=
=
.
(Ⅱ)(i)解:一等品零件的編號為
.從這6個一等品零件中隨機抽取2個,所有可能的結果有:
,
,
,
,
,
,
共有15種.
(ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:
,
,共有6種.
所以P(B)=
.
(本小題滿分12分)
如圖,在五面體ABCDEF中,四邊形ADEF是正方形,FA⊥平面ABCD,BC∥AD,CD=1,AD=
,∠BAD=∠CDA=45°.
(Ⅰ)求異面直線CE與AF所成角的余弦值;
(Ⅱ)證明CD⊥平面ABF;
(本小題滿分12分)
如圖,在邊長為4的菱形
中,
.點
分別在邊
上,點
與點
不重合,
,
.沿
將
翻折到
的位置,使平面
⊥平面
.
![]()
(1)求證:
⊥平面
;
(2)當
取得最小值時,請解答以下問題:
(i)求四棱錐
的體積;
(ii)若點
滿足
=![]()
(
),試探究:直線
與平面
所成角的大小是否一定大于
?并說明理由.
(本小題滿分12分)
已知函數f(x)是定義在[-e,0)∪(0,e]上的奇函數,當x∈(0,e],f(x)=ax+lnx(其中e是自然對數的底數,a∈R)
(1)求f(x)的解析式;
(2)設g(x)=
,x∈[-e,0),求證:當a=-1時,f(x)>g(x)+
;
(3)是否存在實數a,使得當x∈[-e,0)時f(x)的最小值是3 如果存在,求出實數a的值;如果不存在,請說明理由.
(本小題滿分12分)(注意:在試題卷上作答無效)
函數
,其圖象在
處的切線方程為
.
(Ⅰ)求函數
的解析式;
(Ⅱ)若函數
的圖象與
的圖象有三個不同的交點,求實數
的取值范圍;
(Ⅲ)是否存在點P,使得過點P的直線若能與曲線
圍成兩個封閉圖形,則這兩個封閉圖形的面積相等?若存在,求出P點的坐標;若不存在,說明理由.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com