題目列表(包括答案和解析)
如圖是某直三棱柱(側棱與底面垂直)被削去上底后的直觀圖與三視圖中的側(左)視圖、俯視圖,在直觀圖中,
是
的中點,側(左)視圖是直角梯形,俯視圖是等腰直角三角形,有關數據如圖所示.
![]()
(1)求出該幾何體的體積;
(2)若
是
的中點,求證:
∥平面
;
(3)求證:平面
⊥平面
.
19.(本小題滿分14分)如圖所示,已知
是直角梯形,
,
,
![]()
,
平面
.
(1) 證明:
;
(2) 若
是
的中點,證明:
∥平面
;
(3)若
,求三棱錐
的體積.
如圖:三棱錐
中,
^底面
,若底面
是邊長為2的正三角形,且
與底面
所成的角為
.若
是
的中點,則三棱錐
的體積為( ).
A.2 B.3 C.6 D. ![]()
(本題滿分14分)如圖:多面體
中,三角形
是邊長為4的正三角形,
,
平面
,
.
(1)若
是
的中點,求證:![]()
;
(2)求平面
與平面
所成的角的余弦值.
![]()
如圖,四棱錐
中,底面
是菱形,
,
,
是
的中點,點
在側棱
上.
![]()
(1)求證:
⊥平面
;
(2)若
是
的中點,求證:
//平面
;
(3)若
,試求
的值.
天津精通高考復讀學校數學教研組組長 么世濤
一、選擇題 :1-4, BBBB ;5-8,DABD。
提示:1.
2.
3.用
代替
得
4.
5.
,
或
6.
7.略
8.

二、填空題:9.60; 10. 15:10:20 ; 11.
; 12.
;
13.0.74 ; 14. ①、
;②、圓;③.
提示:
9.
10.
,
,
11.
,
12.
,
,
,
,
13.
14.略
三、解答題
15. 解:(1)
.
(2)設抽取
件產品作檢驗,則
,
,得:
,即 
故至少應抽取8件產品才能滿足題意.
16. 解:由題意得
,
,原式可化為
,
而
,
故原式=
.
17. 解:(1)顯然
,連接
,∵
,
,
∴
.由已知
,∴
,
.
∵
∽
,
,
∴
即
.
∴
.
(2)
當且僅當
時,等號成立.此時
,即
為
的中點.于是由
,知平面
,
是其交線,則過
作
。
∴
就是
與平面
所成的角.由已知得
,
,
∴
,
,
.
(3) 設三棱錐
的內切球半徑為
,則

∵
,
,
,
,
,
∴
.
18. 解: (1)
,
(2) ∵
,
∴當
時,
∴當
時,
,
∵
,
,
,
.
∴
的最大值為
或
中的最大者.
∵ 
∴ 當
時,
有最大值為
.
19.(1)解:∵函數
的圖象過原點,
∴
即
,
∴
.
又函數
的圖象關于點
成中心對稱,
∴
,
.
(2)解:由題意有
即
,
即
,即
.
∴數列{
}是以1為首項,1為公差的等差數列.
∴
,即
. ∴
.
∴
,
,
,
.
(3)證明:當
時,

故
20. (1)解:∵
,又
,
∴
.
又∵
,且
∴
.
(2)解:由
,
,
猜想
(3)證明:用數學歸納法證明:
①當
時,
,猜想正確;
②假設
時,猜想正確,即
1°若
為正奇數,則
為正偶數,
為正整數,
2°若
為正偶數,則
為正整數,
,又
,且
所以
即當
時,猜想也正確
由①,②可知,
成立.
(二)
一、1-4,AABB,5-8,CDCB;
提示: 1.
即

2.
即 
3.
即
,也就是
,
4.先確定是哪兩個人的編號與座位號一致,有
種情況,如編號為1的人坐1號座位,且編號為2的人坐2號座位有以下情形: