題目列表(包括答案和解析)
如圖,
,
,…,
,…是曲線
上的點,
,
,…,
,…是
軸正半軸上的點,且
,
,…,
,…
均為斜邊在
軸上的等腰直角三角形(
為坐標原點).
(1)寫出
、
和
之間的等量關系,以及
、
和
之間的等量關系;
(2)求證:
(
);
(3)設
,對所有
,
恒成立,求實數
的取值范圍.
![]()
【解析】第一問利用有
,
得到
第二問證明:①當
時,可求得
,命題成立;②假設當
時,命題成立,即有
則當
時,由歸納假設及
,
得![]()
第三問
![]()
.………………………2分
因為函數
在區間
上單調遞增,所以當
時,
最大為
,即
![]()
解:(1)依題意,有
,
,………………4分
(2)證明:①當
時,可求得
,命題成立;
……………2分
②假設當
時,命題成立,即有
,……………………1分
則當
時,由歸納假設及
,
得
.
即![]()
解得
(
不合題意,舍去)
即當
時,命題成立. …………………………………………4分
綜上所述,對所有
,
. ……………………………1分
(3)
![]()
.………………………2分
因為函數
在區間
上單調遞增,所以當
時,
最大為
,即
.……………2分
由題意,有![]()
.
所以,![]()
某地開發了一個旅游景點,第1年的游客約為100萬人,第2年的游客約為120萬人.某數學興趣小組綜合各種因素預測:①該景點每年的游客人數會逐年增加;②該景點每年的游客都達不到130萬人.該興趣小組想找一個函數
來擬合該景點對外開放的第![]()
年與當年的游客人數
(單位:萬人)之間的關系.
(1)根據上述兩點預測,請用數學語言描述函數
所具有的性質;
(2)若
=
,試確定
的值,并考察該函數是否符合上述兩點預測;
(3)若
=
,欲使得該函數符合上述兩點預測,試確定
的取值范圍.
| m | x |
17世紀,科學家們致力于運動的研究,如計算天體的位置,遠距離航海中對經度和緯度的測量,炮彈的速度對于高度和射程的影響等.諸如此類的問題都需要探究兩個變量之間的關系,并根據這種關系對事物的變化規律作出判斷,如根據炮彈的速度推測它能達到的高度和射程.這正是函數產生和發展的背景.
“function”一詞最初由德國數學家萊布尼茲(G.W.Leibniz,1646~1716)在1692年使用.在中國,清代數學家李善蘭(1811~1882)在1859年和英國傳教士偉烈亞力合譯的《代徽積拾級》中首次將“function”譯做“函數”.
萊布尼茲用“函數”表示隨曲線的變化而改變的幾何量,如坐標、切線等.1718年,他的學生,瑞士數學家約翰·伯努利(J.Bernoulli,1667~1748)強調函數要用公式表示.后來,數學家認為這不是判斷函數的標準.只要一些變量變化,另一些變量隨之變化就可以了.所以,1755年,瑞士數學家歐拉(L.Euler,1707~1783)將函數定義為“如果某些變量,以一種方式依賴于另一些變量,我們將前面的變量稱為后面變量的函數”.
當時很多數學家對于不用公式表示函數很不習慣,甚至抱懷疑態度.函數的概念仍然是比較模糊的.
隨著對微積分研究的深入,18世紀末19世紀初,人們對函數的認識向前推進了.德國數學家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年時提出:“如果對于x的每一個值,y總有一個完全確定的值與之對應,則y是x的函數”.這個定義較清楚地說明了函數的內涵.只要有一個法則,使得取值范圍中的每一個值,有一個確定的y和它對應就行了,不管這個法則是公式、圖象、表格還是其他形式.19世紀70年代以后,隨著集合概念的出現,函數概念又進而用更加嚴謹的集合和對應語言表述,這就是本節學習的函數概念.
綜上所述可知,函數概念的發展與生產、生活以及科學技術的實際需要緊密相關,而且隨著研究的深入,函數概念不斷得到嚴謹化、精確化的表達,這與我們學習函數的過程是一樣的.
你能以函數概念的發展為背景,談談從初中到高中學習函數概念的體會嗎?
1.探尋科學家發現問題的過程,對指導我們的學習有什么現實意義?
2.萊布尼茲、狄利克雷等科學家有哪些品質值得我們學習?
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com