科目: 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
在
處導(dǎo)數(shù)相等,證明:
;
(2)若對(duì)于任意
,直線
與曲線
都有唯一公共點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓
:
的左、右焦點(diǎn)分別為
,
,過(guò)
且垂直于
軸的焦點(diǎn)弦的弦長(zhǎng)為
,過(guò)
的直線
交橢圓
于
,
兩點(diǎn),且
的周長(zhǎng)為
.
(1)求橢圓
的方程;
(2)已知直線
,
互相垂直,直線
過(guò)
且與橢圓
交于點(diǎn)
,
兩點(diǎn),直線
過(guò)
且與橢圓
交于
,
兩點(diǎn).求
的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】函數(shù)
且![]()
(1)當(dāng)
時(shí),求函數(shù)
在點(diǎn)
處的切線方程;
(2)定義在R上的函數(shù)
滿足
,當(dāng)
時(shí),
。若存在
滿足不等式
且
是函數(shù)
的一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,短軸長(zhǎng)為4.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)設(shè)直線l過(guò)點(diǎn)(2,0)且與橢圓C相交于不同的兩點(diǎn)A、B,直線
與x軸交于點(diǎn)D,E是直線
上異于D的任意一點(diǎn),當(dāng)
時(shí),直線BE是否恒過(guò)x軸上的定點(diǎn)?若過(guò),求出定點(diǎn)坐標(biāo),若不過(guò),請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在三棱錐
中,N為CD的中點(diǎn),M是AC上一點(diǎn).
![]()
(1)若M為AC的中點(diǎn),求證:AD//平面BMN;
(2)若
,平面
平面BCD,
,求直線AC與平面BMN所成的角的余弦值。
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某冰糖橙,甜橙的一種,云南著名特產(chǎn),以味甜皮薄著稱。該橙按照等級(jí)可分為四類:珍品、特級(jí)、優(yōu)級(jí)和一級(jí)(每箱有5kg),某采購(gòu)商打算訂購(gòu)一批橙子銷往省外,并從采購(gòu)的這批橙子中隨機(jī)抽取100箱,利用橙子的等級(jí)分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下表:
等級(jí) | 珍品 | 特級(jí) | 優(yōu)級(jí) | 一級(jí) |
箱數(shù) | 40 | 30 | 10 | 20 |
(1)若將頻率改為概率,從這100箱橙子中有放回地隨機(jī)抽取4箱,求恰好抽到2箱是一級(jí)品的概率:
(2)利用樣本估計(jì)總體,莊園老板提出兩種購(gòu)銷方案供采購(gòu)商參考:
方案一:不分等級(jí)賣(mài)出,價(jià)格為27元/kg;
方案二:分等級(jí)賣(mài)出,分等級(jí)的橙子價(jià)格如下:
等級(jí) | 珍品 | 特級(jí) | 優(yōu)級(jí) | 一級(jí) |
售價(jià)(元/kg) | 36 | 30 | 24 | 18 |
從采購(gòu)商的角度考慮,應(yīng)該采用哪種方案?
(3)用分層抽樣的方法從這100箱橙子中抽取10箱,再?gòu)某槿〉?/span>10箱中隨機(jī)抽取3箱,X表示抽取的是珍品等級(jí),求x的分布列及數(shù)學(xué)期望E(X).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線
:
,(
為參數(shù)),將曲線
上的所有點(diǎn)的橫坐標(biāo)縮短為原來(lái)的
,縱坐標(biāo)縮短為原來(lái)的
后得到曲線
,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
。
(1)求曲線
的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線
交于不同的兩點(diǎn)A,B,點(diǎn)M為拋物線
的焦點(diǎn),求
的值。
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù)
(
,
為自然對(duì)數(shù)的底數(shù)),且曲線
在點(diǎn)
處的切線平行于
軸.
(1)求
的值;
(2)求函數(shù)
的極值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓
的右焦點(diǎn)為
,過(guò)
作
軸的垂線交橢圓
于點(diǎn)
(點(diǎn)
在
軸上方),斜率為
的直線交橢圓
于
,
兩點(diǎn),過(guò)點(diǎn)
作直線
交橢圓
于點(diǎn)
,且
,直線
交
軸于點(diǎn)
.
(1)設(shè)橢圓
的離心率為
,當(dāng)點(diǎn)
為橢圓
的右頂點(diǎn)時(shí),
的坐標(biāo)為
,求
的值.
(2)若橢圓
的方程為
,且
,是否存
在使得
成立?如果存在,求出
的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com