已知橢圓C:
=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數關系,直線l:x-y+
=0與以原點為圓心, 以橢圓C的短半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)設M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于A,B兩點,設兩直線的斜率分別為k1,k2,且k1+k2=4,證明:直線AB過定點
.
科目:高中數學 來源: 題型:解答題
如圖,梯形ABCD的底邊AB在y軸上,原點O為AB的中點,
M為CD的中點.![]()
(1)求點M的軌跡方程;
(2)過M作AB的垂線,垂足為N,若存在正常數
,使
,且P點到A、B 的距離和為定值,求點P的軌跡E的方程;
(3)過
的直線與軌跡E交于P、Q兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓
=1(a>b>0)的左焦點為F,離心率為
,過點F且與x軸垂直的直線被橢圓截得的線段長為
.
(1)求橢圓的方程;
(2)設A,B分別為橢圓的左、右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.若
+
=8,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點
、
為雙曲線
:
的左、右焦點,過
作垂直于
軸的直線,在
軸上方交雙曲線
于點
,且
.圓
的方程是
.
(1)求雙曲線
的方程;
(2)過雙曲線
上任意一點
作該雙曲線兩條漸近線的垂線,垂足分別為
、
,求
的值;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
:
的左焦點為
,且過點
.![]()
(1)求橢圓
的方程;
(2)設過點P(-2,0)的直線與橢圓E交于A、B兩點,且滿足
.
①若
,求
的值;
②若M、N分別為橢圓E的左、右頂點,證明: ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的右焦點為F2(1,0),點
在橢圓上.![]()
(1)求橢圓方程;
(2)點
在圓
上,M在第一象限,過M作圓
的切線交橢圓于P、Q兩點,問|F2P|+|F2Q|+|PQ|是否為定值?如果是,求出定值,如不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知定點
,曲線C是使
為定值的點
的軌跡,曲線
過點
.
(1)求曲線
的方程;
(2)直線
過點
,且與曲線
交于
,當
的面積取得最大值時,求直線
的方程;
(3)設點
是曲線
上除長軸端點外的任一點,連接
、
,設
的角平分線
交曲線
的長軸于點
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓
與橢圓
中心在原點,焦點均在
軸上,且離心率相同.橢圓
的長軸長為
,且橢圓
的左準線
被橢圓
截得的線段
長為
,已知點
是橢圓
上的一個動點.![]()
⑴求橢圓
與橢圓
的方程;
⑵設點
為橢圓
的左頂點,點
為橢圓
的下頂點,若直線
剛好平分
,求點
的坐標;
⑶若點
在橢圓
上,點
滿足
,則直線
與直線
的斜率之積是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓
經過點
,其左、右頂點分別是
、
,左、右焦點分別是
、
,
(異于
、
)是橢圓上的動點,連接
交直線
于
、
兩點,若
成等比數列.![]()
(Ⅰ)求此橢圓的離心率;
(Ⅱ)求證:以線段
為直徑的圓過點
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com