【題目】已知直線
(
)與
軸交于
點,動圓
與直線
相切,并且與圓
相外切,
(1)求動圓的圓心
的軌跡
的方程;
(2)若過原點且傾斜角為
的直線與曲線
交于
兩點,問是否存在以
為直徑的圓經過點
?若存在,求出
的值;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F為CD的中點. ![]()
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市對創“市級示范性學校”的甲、乙兩所學校進行復查驗收,對辦學的社會滿意度一項評價隨機訪問了20為市民,這20位市民對這兩所學校的評分(評分越高表明市民的評價越好)的數據如下:
甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;
乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.
檢查組將成績分成了四個等級:成績在區間
的為
等,在區間
的為
等,在區間
的為
等,在區間
為
等.
![]()
(1)請用莖葉圖表示上面的數據,并通過觀察莖葉圖,對兩所學校辦學的社會滿意度進行比較,寫出兩個統計結論;
(2)估計哪所學校的市民的評分等級為
級或
級的概率大,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某大學自主招生的面試中,考生要從規定的6道科學題,4道人文題共10道題中,隨機抽取3道作答,每道題答對得10分,答錯或不答扣5分,已知甲、乙兩名考生參加面試,甲只能答對其中的6道科學題,乙答對每道題的概率都是
,每個人答題正確與否互不影響.
(1)求考生甲得分
的分布列和數學期望
;
(2)求甲,乙兩人中至少有一人得分不少于15分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為了了解該校學生對于某項運動的愛好是否與性別有關,通過隨機抽查110名學生,得到如下2×2的列聯表:
喜歡該項運動 | 不喜歡該項運動 | 總計 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由公式
,算得![]()
附表:
| 0.025 | 0.01 | 0.005 |
| 5.024 | 6.635 | 7.879 |
參照附表,以下結論正確是( )
A. 有
以上的把握認為“愛好該項運動與性別有關”
B. 有
以上的把握認為“愛好該項運動與性別無關”
C. 有
以上的把握認為“愛好該項運動與性別有關”
D. 有
以上的把握認為“愛好該項運動與性別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過拋物線
的焦點
,斜率為
的直線交拋物線于
兩點,且
.
(1)求該拋物線
的方程;
(2)已知拋物線上一點
,過點
作拋物線的兩條弦
和
,且
,判斷直線
是否過定點?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系
中,曲線
的參數方程為
(
,
為參數),在以
為極點,
軸的正半軸為極軸的極坐標系中,曲線
是圓心在極軸上,且經過極點的圓.已知曲線
上的點
對應的參數
,射線
與曲線
交于點
.
(Ⅰ)求曲線
的直角坐標方程;
(Ⅱ)若點
,
在曲線
上,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com