如圖,
是拋物線為
上的一點(diǎn),以S為圓心,r為半徑(
)做圓,分別交x軸于A,B兩點(diǎn),連結(jié)并延長SA、SB,分別交拋物線于C、D兩點(diǎn)。
(1)求證:直線CD的斜率為定值;
(2)延長DC交x軸負(fù)半軸于點(diǎn)E,若EC : ED =" 1" : 3,求
的值。![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
的三個(gè)頂點(diǎn)在拋物線
:
上,
為拋物線
的焦點(diǎn),點(diǎn)
為
的中點(diǎn),
;
(1)若
,求點(diǎn)
的坐標(biāo);
(2)求
面積的最大值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓
上的點(diǎn)M與橢圓右焦點(diǎn)
的連線
與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長軸和短軸端點(diǎn)的連線AB平行.
(1)求橢圓的離心率;
(2)F1是橢圓的左焦點(diǎn),C是橢圓上的任一點(diǎn),證明:
;
(3)過
且與AB垂直的直線交橢圓于P、Q,若
的面積是20
,求此時(shí)橢圓的方程.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
的圓心在坐標(biāo)原點(diǎn)
,且恰好與直線
相切,設(shè)點(diǎn)A為圓上一動點(diǎn),
軸于點(diǎn)
,且動點(diǎn)
滿足
,設(shè)動點(diǎn)
的軌跡為曲線![]()
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點(diǎn),求△OBD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)
是橢圓
上任一點(diǎn),點(diǎn)
到直線
的距離為
,到點(diǎn)
的距離為
,且
.直線
與橢圓
交于不同兩點(diǎn)
、
(
,
都在
軸上方),且
.
(1)求橢圓
的方程;
(2)當(dāng)
為橢圓與
軸正半軸的交點(diǎn)時(shí),求直線
方程;
(3)對于動直線
,是否存在一個(gè)定點(diǎn),無論
如何變化,直線
總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,過
的左焦點(diǎn)
的直線
被圓
截得的弦長為
.
(1)求橢圓
的方程;
(2)設(shè)
的右焦點(diǎn)為
,在圓
上是否存在點(diǎn)
,滿足
,若存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知直線
:
和橢圓
,橢圓C的離心率為
,連結(jié)橢圓的四個(gè)頂點(diǎn)形成四邊形的面積為
.
(1)求橢圓C的方程;
(2)若直線
與橢圓C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)m的取值范圍;
(3)當(dāng)
時(shí),設(shè)直線
與y軸的交點(diǎn)為P,M為橢圓C上的動點(diǎn),求線段PM長度的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上,橢圓上的點(diǎn)到焦點(diǎn)的最小距離為
,離心率
.
(1)求橢圓
的方程;
(2)若直線
交
于
、
兩點(diǎn),點(diǎn)
,問是否存在
,使
?若存在求出
的值,若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com