如圖,已知正方形ABCD的邊長為1,F(xiàn)D⊥平面ABCD,EB⊥平面ABCD,F(xiàn)D=BE=1,M為BC邊上的動點(diǎn).
(1)設(shè)N為EF上一點(diǎn),當(dāng)
時,有DN ∥平面AEM,求
的值;
(2)試探究點(diǎn)M的位置,使平面AME⊥平面AEF。![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)如圖所示,三棱柱A1B1C1—ABC的三視圖中,正(主)視圖和側(cè)(左)視圖是全等的矩形,俯視圖是等腰直角三角形,點(diǎn)M是A1B1的中點(diǎn).![]()
(1)求證:B1C∥平面AC1M;
(2)求證:平面AC1M⊥平面AA1B1B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)如圖,ABCD是正方形空地,邊長為30m,電源在點(diǎn)P處,點(diǎn)P到邊AD,AB距離分別為
m,
m.某廣告公司計劃在此空地上豎一塊長方形液晶廣告屏幕
,
.線段MN必須過點(diǎn)P,端點(diǎn)M,N分別在邊AD,AB上,設(shè)AN=x(m),液晶廣告屏幕MNEF的面積為S(m2).![]()
(1)求S關(guān)于x的函數(shù)關(guān)系式及該函數(shù)的定義域;
(2)當(dāng)x取何值時,液晶廣告屏幕MNEF的面積S最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖,有三個生活小區(qū)(均可看成點(diǎn))分別位于
三點(diǎn)處,
,
到線段
的距離
,
(參考數(shù)據(jù):
). 今計劃建一個生活垃圾中轉(zhuǎn)站
,為方便運(yùn)輸,
準(zhǔn)備建在線段
(不含端點(diǎn))上.![]()
(1)設(shè)
,試將
到三個小區(qū)距離的最遠(yuǎn)者
表示為
的函數(shù),并求
的最小值;
(2)設(shè)
,試將
到三個小區(qū)的距離之和
表示為
的函數(shù),并確定當(dāng)
取何值時,可使
最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分) 在長方體
中,
分別是
的中點(diǎn),
,
.
(Ⅰ)求證:
//平面
;
(Ⅱ)在線段
上是否存在點(diǎn)
,使直線
與
垂直,
如果存在,求線段
的長,如果不存在,請說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,空間四邊形ABCD被一平面所截,截面EFGH是平行四邊形.
(1)求證:CD∥平面EFGH;
(2)如果AB=CD=a求證:四邊形EFGH的周長為定值;![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com