已知簡單幾何體的三視圖如圖所示![]()
求該幾何體的體積和表面積。
附:
分別為上、下底面積
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn)![]()
(Ⅰ)證明:BC1//平面A1CD;
(Ⅱ)設(shè)AA1=AC=CB=2,AB=
,求三棱錐C一A1DE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱ABC—A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB = 90°,E是棱CC1上中點(diǎn),F(xiàn)是AB中點(diǎn),AC = 1,BC = 2,AA1 = 4.![]()
(1)求證:CF∥平面AEB1;(2)求三棱錐C-AB1E的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐
中,
是正方形,E是
的中點(diǎn),![]()
(1)若
,求 PC與面AC所成的角
(2) 求證:
平面![]()
(3) 求證:平面PBC⊥平面PCD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2AB=2.![]()
(Ⅰ)若F為PC的中點(diǎn),求證PC⊥平面AEF;
(Ⅱ)求四棱錐P-ABCD的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
如圖,四棱錐
中,
是
的中點(diǎn),
,
,且
,
,又
面
.![]()
(1) 證明:
;
(2) 證明:
面
;
(3) 求四棱錐
的體積
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com