【題目】函數(shù)
的一段圖象如圖所示:將
的圖象向右平移
(
)個(gè)單位,可得到函數(shù)
的圖象,且圖象關(guān)于原點(diǎn)對(duì)稱.(1)求
的值.
(2)求
的最小值,并寫出
的表達(dá)式.
(3)設(shè)t>0,關(guān)于x的函數(shù)
在區(qū)間
上最小值為-2,求t的范圍.
![]()
【答案】(1)答案見解析;(2)m的最小值為
;(3)
.
【解析】試題分析:
(1)由函數(shù)的圖象結(jié)合三角函數(shù)的性質(zhì)可得
,
,
.
(2)結(jié)合(1)的結(jié)論可得
,據(jù)此可得
的最小值為
,且
.
(3)由題意結(jié)合(2)的結(jié)論可得:
,結(jié)合函數(shù)的定義域可得:
,據(jù)此可得不等式:
,求解不等式可得
的取值范圍是
.
試題解析:
(1)由函數(shù)的最大值可得
,函數(shù)的最小正周期為:
,
則
,當(dāng)
時(shí),
,
故:
,令
可得:
.
(2)結(jié)合(1)的結(jié)論可得
,
故
的最小值為
,將函數(shù)圖象向右平移
個(gè)單位可得
.
(3)由題意結(jié)合(2)的結(jié)論可得:
,結(jié)合函數(shù)的定義域可得:
,若函數(shù)能取到最小值
,則:
,其中
,
據(jù)此可得
的取值范圍是
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐曲線
.命題
:方程
表示焦點(diǎn)在
軸上的橢圓;命題
:圓錐曲線
的離心率
,若命題
為真命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸、y軸上的截距相等,求切線的方程;
(2)從圓C外一點(diǎn)P(x1 , y1)向圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使|PM|最小的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)如圖所示的莖葉圖記錄了甲、乙兩組各四名同學(xué)的投籃命中次數(shù), 乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn), 在圖中以
表示.
![]()
(Ⅰ)如果乙組同學(xué)投籃命中次數(shù)的平均數(shù)為
, 求
及乙組同學(xué)投籃命中次數(shù)的方差;
(Ⅱ)在(Ⅰ)的條件下, 分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機(jī)選取一名, 記事件A:“兩名同學(xué)的投籃命中次數(shù)之和為17”, 求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m/min.在甲出發(fā)2 min后,乙從A乘纜車到B,在B處停留1 min后,再從B勻速步行到C.假設(shè)纜車勻速直線運(yùn)行的速度為130 m/min,山路AC長為1260 m,經(jīng)測(cè)量,cos A=
,cos C=![]()
(1)求索道AB的長;
(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知拋物線 C1:y2=2px (p>0),直線 l 與拋物線 C 相交于 A、B 兩點(diǎn),且當(dāng)傾斜角為 60°的直線 l 經(jīng)過拋物線 C1 的焦點(diǎn) F 時(shí),有|AB|=
.![]()
(Ⅰ)求拋物線 C 的方程;
(Ⅱ)已知圓 C2:(x﹣1)2+y2=
,是否存在傾斜角不為 90°的直線 l,使得線段 AB 被圓 C2 截成三等分?若存在,求出直線 l 的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)獨(dú)游戲越來越受人們喜愛,今年某地區(qū)科技館組織數(shù)獨(dú)比賽,該區(qū)甲、乙、丙、丁四所學(xué)校的學(xué)生積極參賽,參賽學(xué)生的人數(shù)如表所示:
中學(xué) | 甲 | 乙 | 丙 | 丁 |
人數(shù) | 30 | 40 | 20 | 10 |
為了解參賽學(xué)生的數(shù)獨(dú)水平,該科技館采用分層抽樣的方法從這四所中學(xué)的參賽學(xué)生中抽取30名參加問卷調(diào)查.
(Ⅰ)問甲、乙、丙、丁四所中學(xué)各抽取多少名學(xué)生?
(Ⅱ)從參加問卷調(diào)查的30名學(xué)生中隨機(jī)抽取2名,求這2名學(xué)生來自同一所中學(xué)的概率;
(Ⅲ)在參加問卷調(diào)查的30名學(xué)生中,從來自甲、丙兩所中學(xué)的學(xué)生中隨機(jī)抽取2名,用X表示抽得甲中學(xué)的學(xué)生人數(shù),求X的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD內(nèi)接于圓O
(1)若AB=2,BC=6,CD=4,AC=8,求BD
(2)若AC=
,BC=
+1,∠ADB=
,求AD2+DC2的取值范圍
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com