若|
|=|
|=1,
⊥
且2
+3
與k
-4
也互相垂直,則實數k的值為
[ ]
科目:高中數學 來源: 題型:
若α,β是一組基底,向量γ=x·α+y·β(x,y∈R),則稱(x,y)為向量γ在基底α,β下的坐標,現已知向量a在基底p=(1,-1),q=(2,1)下的坐標為(-2,2),則a在另一組基底m=(-1,1),n=(1,2)下的坐標為( )
A.(2,0) B.(0,-2)
C.(-2,0) D.(0,2)
查看答案和解析>>
科目:高中數學 來源: 題型:
已知a,b∈R,命題“若a+b=1,則a2+b2≥
”的否命題是 ( )
A.若a+b≠1,則a2+b2<
B.若a+b=1,則a2+b2<![]()
C.若a2+b2<
,則a+b≠1 D.若a2+b2≥
,則a+b=1
查看答案和解析>>
科目:高中數學 來源:2014屆廣東省高一期中考試文科數學試卷A卷(解析版) 題型:解答題
已知函數f(x)(x∈R)滿足f(x)=
,a≠0,f(1)=1,且使f(x)=2x成立的實數x只有一個.
(1)求函數f(x)的表達式;
(2)若數列{an}滿足a1=
,an+1=f(an),bn=
-1,n∈N*,證明數列{bn}是等比數列,并求出{bn}的通項公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=
,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即
=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=
.…………………………………………4分
(2)an+1=f(an)=
(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}為等比數列,q=
.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=![]()
n-1=
n(n∈N*).……………………………9分
(3)證明:∵anbn=an
=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=
+
+…+
<
+
+…+![]()
=
=1-
<1(n∈N*).
查看答案和解析>>
科目:高中數學 來源:2011-2012學年湖北省高三上學期期末考試理科數學試卷 題型:解答題
(本題滿分12分)如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,點E在線段AD上,CE∥AB。
(Ⅰ)求證:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,且CD與平面PAD所成的角為45°,求二面角B—PE—A的正切值。
![]()
查看答案和解析>>
科目:高中數學 來源:2010年正定中學高二下學期期末考試數學試題 題型:解答題
(12分)19.(本題滿分12分)
如圖,已知四面體ABCD中,
.
![]()
(1)指出與面BCD垂直的面,并加以證明.
(2)若AB=BC=1,CD=
,二面角C-AD-B的平面角為
,
,求
的表達式及其取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com