【題目】已知函數(shù)
.
(1)若曲線
在點
處的切線斜率為3,且
時
有極值,求函數(shù)
的解析式;
(2)在(1)的條件下,求函數(shù)
在
上的最大值和最小值.
【答案】
(1)解:由f(1)=3, f(
)=0 得a=2,b=-4 ,則函數(shù)的解析式為 ![]()
(2)解:由f(x)=x3+2x2-4x+5 得f(x)=(x+2)(3x-2) f(x)=0得 x1=-2 ,x2= ![]()
變化情況如表:
x | -4 | (-4,-2) | -2 | (-2, |
| ( | 1 |
f(x) | + | 0 | - | 0 | + | ||
f(x) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 | ||
函數(shù)值 | -11 | 13 |
| 4 |
所以f(x)在[-4,1]上的最大值13,最小值-11
【解析】(1)先求出原函數(shù)的導函數(shù)利用曲線f(x) 在點(1,f(1))處的切線斜率為3,且x=
時,y=f(x) 有極值,聯(lián)立兩個方程即可求出函數(shù)f(x) 的解析。(2)確定函數(shù)的極值點,利用函數(shù)的最值在極值點處及端點處取得,即可得到結(jié)論。
【考點精析】通過靈活運用函數(shù)的最大(小)值與導數(shù),掌握求函數(shù)
在
上的最大值與最小值的步驟:(1)求函數(shù)
在
內(nèi)的極值;(2)將函數(shù)
的各極值與端點處的函數(shù)值
,
比較,其中最大的是一個最大值,最小的是最小值即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】第一屆“一帶一路”國際合作高峰論壇于2017年5月14日至15日在北京舉行,為了保護各國元首的安全,將5個安保小組全部安排到指定三個區(qū)域內(nèi)工作,且這三個區(qū)域每個區(qū)域至少有一個安保小組,則這樣的安排的方法共有( )
A.96種
B.100種
C.124種
D.150種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2|x|.
(1)將函數(shù)f(x)寫成分段函數(shù);
(2)判斷函數(shù)的奇偶性,并畫出函數(shù)圖象.
(3)若函數(shù)在[a, +∞)上單調(diào),求a的范圍。
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在
上的函數(shù)
,如果滿足:對任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的一個上界.已知函數(shù)
,
.
(1)若函數(shù)
為奇函數(shù),求實數(shù)
的值;
(2)在(1)的條件下,求函數(shù)
在區(qū)間
上的所有上界構(gòu)成的集合;
(3)若函數(shù)
在
上是以3為上界的有界函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系
中,曲線
的方程為
,直線
的傾斜角為
且經(jīng)過點
.
(1)以
為極點,
軸的正半軸為極軸建立極坐標系,求曲線
的極坐標方程;
(2)設(shè)直線
與曲線
交于兩點
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知首項為
的等比數(shù)列
是遞減數(shù)列,且
,
,
成等差數(shù)列;數(shù)列
的前
項和為
,且
, ![]()
(Ⅰ)求數(shù)列
,
的通項公式;
(Ⅱ)已知
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=
的定義域為R
(1)當a=2時,求函數(shù)f(x)的值域
(2)若函數(shù)f(x)是奇函數(shù),①求a的值;②解不等式f(3﹣m)+f(3﹣m2)>0.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com