已知橢圓的焦點坐標為F1(-1,0),F2(1,0),過F2垂直于長軸的直線交橢圓于P,Q兩點,且|PQ|=3.
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點M,N,則△F1MN的內切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.
科目:高中數學 來源: 題型:解答題
已知橢圓
的離心率為
,短軸一個端點到右焦點的距離為
.
(1)求橢圓
的方程;
(2)設不與坐標軸平行的直線
與橢圓
交于
兩點,坐標原點
到直線
的距離為
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓
的離心率是
,
分別是橢圓
的左、右兩個頂點,點
是橢圓
的右焦點。點
是
軸上位于
右側的一點,且滿足
.![]()
(1)求橢圓
的方程以及點
的坐標;
(2)過點
作
軸的垂線
,再作直線
與橢圓
有且僅有一個公共點
,直線
交直線
于點
.求證:以線段
為直徑的圓恒過定點,并求出定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線C的頂點為O(0,0),焦點為F(0,1).![]()
(1)求拋物線C的方程;
(2)過點F作直線交拋物線C于A,B兩點.若直線AO、BO分別交直線l:y=x-2于M、N兩點,求|MN|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,焦距為
的橢圓
的兩個頂點分別為
和
,且
與n
,
共線.![]()
(1)求橢圓
的標準方程;
(2)若直線
與橢圓
有兩個不同的交點
和
,且原點
總在以
為直徑的圓的內部,
求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓中心在坐標原點,焦點在x軸上,離心率為
,它的一個頂點為拋物線x2=4y的焦點.
(1)求橢圓方程;
(2)若直線y=x-1與拋物線相切于點A,求以A為圓心且與拋物線的準線相切的圓的方程;
(3)若斜率為1的直線交橢圓于M、N兩點,求△OMN面積的最大值(O為坐標原點).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線C:y2=2px(p>0),M點的坐標為(12,8),N點在拋物線C上,且滿足
=
,O為坐標原點.![]()
(1)求拋物線C的方程;
(2)以M點為起點的任意兩條射線l1,l2的斜率乘積為1,并且l1與拋物線C交于A,B兩點,l2與拋物線C交于D,E兩點,線段AB,DE的中點分別為G,H兩點.求證:直線GH過定點,并求出定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知動直線
與橢圓![]()
交于![]()
、![]()
兩不同點,且△
的面積
=
,其中
為坐標原點.
(1)證明
和
均為定值;
(2)設線段
的中點為
,求
的最大值;
(3)橢圓
上是否存在點
,使得
?若存在,判斷△
的形狀;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設F1,F2分別是橢圓E:x2+
=1(0<b<1)的左、右焦點,過F1的直線l與E相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數列.
(1)求|AB|;
(2)若直線l的斜率為1,求b的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com