試判斷函數
在[
,+∞)上的單調性.
科目:高中數學 來源: 題型:解答題
已知函數
.
(1)若
的定義域和值域均是
,求實數
的值;
(2)若
在區間
上是減函數,且對任意的
,都有
,求實數
的取值范圍;
(3)若
,且對任意的
,都存在
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)某醫藥研究所開發的一種新藥,如果成年人按規定的劑量服用,據監測:服藥后每毫升血液中的含藥量
(單位:微克)與時間
(單位:小時)之間近似滿足如圖所示的曲線.![]()
(Ⅰ)寫出第一次服藥后
與
之間的函數關系式
;
(Ⅱ)據進一步測定:每毫升血液中含藥量不少于
微克時,治療有效.問:服藥多少小時開始有治療效果?治療效果能持續多少小時?(精確到0.1)(參考數據:
).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=log4(4x+1)+kx(k∈R)是偶函數.
(1)求k的值;
(2)探究函數f(x)=ax+
(a、b是正常數)在區間
和
上的單調性(只需寫出結論,不要求證明).并利用所得結論,求使方程f(x)-log4m=0有解的m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度
(單位:輛/千米)的函數.當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當
時,車流速度
是車流密度x的一次函數.
(1)當
時,求函數
的表達式;
(2)當車流密度
為多大時,車流量(單位時間內通過橋上某觀點的車輛數,單位:輛/每小時)
可以達到最大,并求出最大值(精確到1輛/小時)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com