【題目】設(shè)
,函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
在區(qū)間
上有唯一零點(diǎn),試求a的值.
【答案】(1)
的單調(diào)減區(qū)間是
,單調(diào)增區(qū)間是
;(2)
.
【解析】
(1)將
代入
中可得
(
),令
,解得
,進(jìn)而求得單調(diào)區(qū)間;
(2)令
,解得
(舍),
,可得函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增,則
,由于函數(shù)
在區(qū)間
上有唯一零點(diǎn),則
,整理即為
,設(shè)
,可得
在
是單調(diào)遞增的,則
,進(jìn)而求得![]()
(1)函數(shù)
,
當(dāng)
時(shí),
(
),
∴
,
令
,即
,
解得
或
(舍),
∴
時(shí),
;
時(shí),
,
∴
的單調(diào)減區(qū)間是
,單調(diào)增區(qū)間是![]()
(2)
,
則
,
令
,得
,
∵
,
∴
,
∴方程的解為
(舍),
;
∴函數(shù)
在
上單調(diào)遞減,在
上單調(diào)遞增,
∴
,
若函數(shù)
在區(qū)間
上有唯一零點(diǎn),
則
,
而
滿足
,
∴
,
即
,
設(shè)
,
∵
在
是單調(diào)遞增的,
∴
至多只有一個(gè)零點(diǎn),
而
,
∴用
代入
,
得
,
解得![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)指出函數(shù)
的基本性質(zhì):定義域,奇偶性,單調(diào)性,值域(結(jié)論不需證明),并作出函數(shù)
的圖象;
(2)若關(guān)于
的不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)若關(guān)于
的方程
恰有
個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cos ωx·sin
+a(ω>0)圖象上最高點(diǎn)的縱坐標(biāo)為2,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π.
(1)求a和ω的值;
(2)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某飲水機(jī)廠生產(chǎn)的A,B,C,D四類產(chǎn)品,每類產(chǎn)品均有經(jīng)濟(jì)型和豪華型兩種型號(hào),某一月的產(chǎn)量如下表(單位:臺(tái))
A | B | C | D | |
經(jīng)濟(jì)型 | 5000 | 2000 | 4500 | 3500 |
豪華型 | 2000 | 3000 | 1500 | 500 |
(1)在這一月生產(chǎn)的飲水機(jī)中,用分層抽樣的方法抽取n臺(tái),其中有A類產(chǎn)品49臺(tái),求n的值;
(2)用隨機(jī)抽樣的方法,從C類經(jīng)濟(jì)型飲水機(jī)中抽取10臺(tái)進(jìn)行質(zhì)量檢測(cè),經(jīng)檢測(cè)它們的得分如下:7.9,9.4,7.8,9.4,8.6,9.2,10,9.4,7.9,9.4,從D類經(jīng)濟(jì)型飲水機(jī)中抽取10臺(tái)進(jìn)行質(zhì)量檢測(cè),經(jīng)檢測(cè)它們的得分如下:8.9,9.3,8.8,9.2,8.6,9.2,9.0,9.0,8.4,8.6,根據(jù)分析,你會(huì)選擇購(gòu)買C類經(jīng)濟(jì)型飲水機(jī)與D類經(jīng)濟(jì)型飲水機(jī)中哪類產(chǎn)品.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為普及學(xué)生安全逃生知識(shí)與安全防護(hù)能力,某學(xué)校高一年級(jí)舉辦了安全知識(shí)與安全逃生能力競(jìng)賽,該競(jìng)賽分為預(yù)賽和決賽兩個(gè)階段,預(yù)賽為筆試,決賽為技能比賽,現(xiàn)將所有參賽選手參加筆試的成績(jī)(得分均為整數(shù),滿分為
分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
|
|
|
|
|
|
|
|
|
|
|
|
合計(jì) |
|
|
(1)求表中
,
,
,
,
的值;
(2)按規(guī)定,預(yù)賽成績(jī)不低于
分的選手參加決賽.已知高一(2)班有甲、乙兩名同學(xué)取得決賽資格,記高一(2)班在決賽中進(jìn)入前三名的人數(shù)為
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(
,且
為常數(shù)).
(1)求
的單調(diào)區(qū)間;
(2)若
在區(qū)間
內(nèi),存在
且
時(shí),使不等式
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求
的最小值;
(2)若
,求
的單調(diào)區(qū)間;
(3)試比較
與
的大小
,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是定義在
上的偶函數(shù),且當(dāng)
時(shí),
.現(xiàn)已畫出函數(shù)
在
軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:
![]()
(1)直接寫出函數(shù)
,
的增區(qū)間;
(2)寫出函數(shù)
,
的解析式;
(3)若函數(shù)
,
,求函數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線l的參數(shù)方程為
(t為參數(shù),
),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
.
(1)當(dāng)
時(shí),寫出直線l的普通方程及曲線C的直角坐標(biāo)方程;
(2)已知點(diǎn)
,設(shè)直線l與曲線C交于A,B兩點(diǎn),試確定
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com