【題目】如圖,在平面直角坐標(biāo)系
中,點(diǎn)
,直線
,設(shè)圓
的半徑為1, 圓心在
上.
![]()
(1)若圓心
也在直線
上,過點(diǎn)
作圓
的切線,求切線方程;
(2)若圓
上存在點(diǎn)
,使
,求圓心
的橫坐標(biāo)
的取值范圍.
【答案】(1)
或
(2)![]()
【解析】
試題分析:(1)兩直線方程聯(lián)立可解得圓心坐標(biāo),又知圓
的半徑為
,可得圓的方程,根據(jù)點(diǎn)到直線距離公式,列方程可求得直線斜率,進(jìn)而得切線方程;(2)根據(jù)圓
的圓心在直線
:
上可設(shè)圓
的方程為
,由
可得
的軌跡方程為
,若圓
上存在點(diǎn)
,使
,只需兩圓有公共點(diǎn)即可.
試題解析:(1)由
得圓心
,
∵圓
的半徑為1,
∴圓
的方程為:
,
顯然切線的斜率一定存在,設(shè)所求圓
的切線方程為
,即
.
∴
,
∴
,∴
或
.
∴所求圓
的切線方程為
或
.
(2)∵圓
的圓心在直線
:
上,所以,設(shè)圓心
為
,
則圓
的方程為
.
又∵
,
∴設(shè)
為
,則
,整理得
,設(shè)為圓
.
所以點(diǎn)
應(yīng)該既在圓
上又在圓
上,即圓
和圓
有交點(diǎn),
∴
,
由
,得
,
由
,得
.
綜上所述,
的取值范圍為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車的推廣給消費(fèi)者帶來全新消費(fèi)體驗(yàn),迅速贏得廣大消費(fèi)者的青睞,然而,同時(shí)也暴露出管理、停放、服務(wù)等方面的問題,為了了解公眾對(duì)共享單車的態(tài)度(提倡或不提倡),某調(diào)查小組隨機(jī)地對(duì)不同年齡段50人進(jìn)行調(diào)查,將調(diào)查情況整理如下表:
![]()
并且,年齡在
和
的人中持“提倡”態(tài)度的人數(shù)分別為5和3,現(xiàn)從這兩個(gè)年齡段中隨機(jī)抽取2人征求意見.
(Ⅰ)求年齡在
中被抽到的2人都持“提倡”態(tài)度的概率;
(Ⅱ)求年齡在
中被抽到的2人至少1人持“提倡”態(tài)度的概率.
【答案】(1)
;(2)
.
【解析】試題分析:(1)年齡在[20,25)中共有6人,其中持“提倡”態(tài)度的人數(shù)為5,其中抽兩人,基本事件總數(shù)n=15,被抽到的2人都持“提倡”態(tài)度包含的基本事件個(gè)數(shù)m=10,由此能求出年齡在[20,25)中被抽到的2人都持“提倡”態(tài)度的概率.(2)年齡在[40,45)中共有5人,其中持“提倡”態(tài)度的人數(shù)為3,其中抽兩人,基本事件總數(shù)n′=10,年齡在[40,45)中被抽到的2人至少1人持“提倡”態(tài)度包含的基本事件個(gè)數(shù)m′=9,由此能求出年齡在[40,45)中被抽到的2人至少1人持“提倡”態(tài)度的概率.
解析:
(1)設(shè)在
中的6人持“提倡”態(tài)度的為
,
,
,
,
,持“不提倡”態(tài)度的為
.
總的基本事件有(
),(
),(
),(
),(
),(
),(
),(
),(
),(
),(
),(
),(
),(
),(
).共15個(gè),其中兩人都持“提倡”態(tài)度的有10個(gè),
所以P=
=![]()
(2)設(shè)在
中的5人持“提倡”態(tài)度的為
,
,
,持“不提倡”態(tài)度的為
,
.
總的基本事件有(
),(
),(
),(
),(
),(
),(
),(
),(
),(
),共10個(gè),其中兩人都持“不提倡”態(tài)度的只有(
)一種,所以P=
=![]()
【題型】解答題
【結(jié)束】
22
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,已知圓
的極坐標(biāo)方程為
,直線
的參數(shù)方程為
(
為參數(shù)),若
與
交于
兩點(diǎn).
(Ⅰ)求圓
的直角坐標(biāo)方程;
(Ⅱ)設(shè)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,底面
為平行四邊形,
,
,
底面
.
(1)證明:平面
平面
;
(2)若二面角
的大小為
,求
與平面所成角的正弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)
的圖象恒過(0,0)和(1,1)兩點(diǎn),則稱函數(shù)
為“0-1函數(shù)”.
(1)判斷下面兩個(gè)函數(shù)是否是“0-1函數(shù)”,并簡(jiǎn)要說明理由:
①
; ②
.
(2)若函數(shù)
是“0-1函數(shù)”,求
;
(3)設(shè)
,定義在R上的函數(shù)
滿足:① 對(duì)
,
R,均有
;②
是“0-1函數(shù)”,求函數(shù)
的解析式及實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市“網(wǎng)約車”的現(xiàn)行計(jì)價(jià)標(biāo)準(zhǔn)是:路程在
以內(nèi)(含
)按起步價(jià)
元收取,超過
后的路程按
元/
收取,但超過
后的路程需加收
的返空費(fèi)(即單
價(jià)為
元/
).
(1) 將某乘客搭乘一次“網(wǎng)約車”的費(fèi)用
(單位:元)表示為行程
,
單位:
)的分段函數(shù);
(2) 某乘客的行程為
,他準(zhǔn)備先乘一輛“網(wǎng)約車”行駛
后,再換乘另一輛
“網(wǎng)約車”完成余下行程,請(qǐng)問:他這樣做是否比只乘一輛“網(wǎng)約車”完成全部行程更省錢?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐
中,底面是邊長(zhǎng)為2的菱形,
,
,
,
,
為
的中點(diǎn).
(1)證明:
;
(2)求二面角
的正切值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn為數(shù)列{an}的前n項(xiàng)和,且有a1=1,Sn+1=an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)an;
(2)若bn=
,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)設(shè)ck=
,{ck}的前n項(xiàng)和為An , 是否存在最小正整數(shù)m,使得不等式An<m對(duì)任意正整數(shù)n恒成立?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線
的焦點(diǎn),斜率為
的直線交拋物線于
兩點(diǎn),且
.
(1)求該拋物線的方程;
(2)
為坐標(biāo)原點(diǎn),
為拋物線上一點(diǎn),若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱
的所有棱長(zhǎng)都是
,
平面
,
,
分別是
,
的中點(diǎn).
![]()
(
)求證:
平面
.
(
)求二面角
的余弦值.
(
)求點(diǎn)
到平面
的距離.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com