(本小題滿分13分) 已知等差數列
滿足:
,
,
的前n項和為
.
(Ⅰ)求通項公式
及前n項和
;
(Ⅱ)令
=
(n
N*),求數列
的前n項和
.
(Ⅰ)
;
=
;(Ⅱ)
=
。
【解析】
試題分析:(1)結合已知中的等差數列的項的關系式,聯立方程組得到其通項公式和前n項和。
(2)在第一問的基礎上,得到bn的通項公式,進而分析運用裂項法得到。
解:(Ⅰ)設等差數列
的公差為d,由已知可得
,
解得
,……………2分,
所以
;………4分
=
=
………6分
(Ⅱ)由(Ⅰ)知
,
所以
=
=![]()
=
……10分
所以
=
=![]()
即數列
的前n項和
=
……13分
考點:本試題主要考查了等差數列的通項公式以及前n項和的求解運用。
點評:解決該試題的關鍵是能得到等差數列的通項公式,然后求解新數列的通項公式,利用裂項的思想來得到求和。易錯點就是裂項的準確表示。
科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數![]()
.
(1)求函數
的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數
在區間
上的圖象.
(3)設0<x<
,且方程
有兩個不同的實數根,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題
(本小題滿分13分)已知定義域為
的函數
是奇函數.
(1)求
的值;(2)判斷函數
的單調性;
(3)若對任意的
,不等式恒成立
,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱
的所有棱長都為2,
為
的中點。
(Ⅰ)求證:
∥平面
;
(Ⅱ)求異面直線
與
所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題
(本小題滿分13分)
已知
為銳角,且
,函數
,數列{
}的首項
.
(1) 求函數
的表達式;
(2)在
中,若
A=2
,
,BC=2,求
的面積
(3) 求數列
的前
項和![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com