【題目】如圖1,在菱形ABCD中,對角線AC與BD相交于點(diǎn)O,AB=13,BD=24,在菱形ABCD的外部以AB為邊作等邊三角形 ABE.點(diǎn)F是對角線BD上一動(dòng)點(diǎn)(點(diǎn)F不與點(diǎn)B重合),將線段AF繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°得到線段AM,連接FM.
![]()
(1)求AO的長;
(2)如圖2,當(dāng)點(diǎn)F在線段BO上,且點(diǎn)M,F(xiàn),C三點(diǎn)在同一條直線上時(shí),求證:AC=
AM;
(3)連接EM,若△AEM的面積為40,請直接寫出△AFM的周長.
【答案】(1)、5;(2)、證明過程見解析;(3)、3![]()
【解析】
試題分析:(1)、在RT△OAB中,利用勾股定理OA=
求解;(2)、由四邊形ABCD是菱形,求出△AFM為等邊三角形,∠M=∠AFM=60°,再求出∠MAC=90°,在Rt△ACM中tan∠M=
,求出AC;(3)、求出△AEM≌△ABF,利用△AEM的面積為40求出BF,在利用勾股定理AF=
=
,得出△AFM的周長為3
.
試題解析:(1)、∵四邊形ABCD是菱形,
∴AC⊥BD,OB=OD=
BD,
∵BD=24,
∴OB=12,
在Rt△OAB中,
∵AB=13,
∴OA=
=5.
(2)、如圖2,
![]()
∵四邊形ABCD是菱形,
∴BD垂直平分AC,
∴FA=FC,∠FAC=∠FCA,
由已知AF=AM,∠MAF=60°,
∴△AFM為等邊三角形,
∴∠M=∠AFM=60°,
∵點(diǎn)M,F(xiàn),C三點(diǎn)在同一條直線上,
∴∠FAC+∠FCA=∠AFM=60°,
∴∠FAC=∠FCA=30°,
∴∠MAC=∠MAF+∠FAC=60°+30°=90°,
在Rt△ACM中∵tan∠M=
,
∴tan60°=
,
∴AC=
AM.
(3)、如圖,連接EM,
![]()
∵△ABE是等邊三角形,
∴AE=AB,∠EAB=60°,
由(2)知△AFM為等邊三角形,
∴AM=AF,∠MAF=60°,
∴∠EAM=∠BAF,
在△AEM和△ABF中,
,
∴△AEM≌△ABF(SAS),
∵△AEM的面積為40,△ABF的高為AO
∴
BFAO=40,BF=16,
∴FO=BF﹣BO=16﹣12=4
AF=
=
,
∴△AFM的周長為3
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列代數(shù)運(yùn)算正確的是( )
A.(x3)2=x5
B.(2x)2=2x2
C.(x+1)2=x2+1
D.x3x2=x5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列3×3網(wǎng)格圖都是由9個(gè)相同的小正方形組成,每個(gè)網(wǎng)格圖中有3個(gè)小正方形已涂上陰影,請?jiān)谟嘞碌?/span>6個(gè)空白小正方形中,按下列要求涂上陰影:
(1)選取1個(gè)涂上陰影,使4個(gè)陰影小正方形組成一個(gè)軸對稱圖形,但不是中心對稱圖形;
(2)選取1個(gè)涂上陰影,使4個(gè)陰影小正方形組成一個(gè)中心對稱圖形,但不是軸對稱圖形;
(3)選取2個(gè)涂上陰影,使5個(gè)陰影小正方形組成一個(gè)軸對稱圖形.
(請將三個(gè)小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用完全平方公式計(jì)算79.82的最佳選擇是( )
A. (80-0.2)2 B. (100-20.2)2
C. (79+0.8)2 D. (70+9.8)2
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com