【題目】某中學開展“數學史”知識競賽活動,八年級(1)、(2)班根據初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績(滿分為100分)如圖所示.
![]()
(1)請計算八(1)班、八(2)班兩個班選出的5名選手復賽的平均成績;
(2)請判斷哪個班選出的5名選手的復賽成績比較穩定,并說明理由?
【答案】(1)八(1)班和八(2)班兩個班選出的5名選手復賽的平均成績均為85分;(2)八(1)班的成績比較穩定,見解析
【解析】
(1)根據算術平均數的概念求解可得;
(2)先計算出兩個班的方差,再根據方差的意義求解可得.
(1)
=
(75+80+85+85+100)=85(分),
=
(70+100+100+75+80)=85(分),
所以,八(1)班和八(2)班兩個班選出的5名選手復賽的平均成績均為85分.
(2)八(1)班的成績比較穩定.
理由如下:
s2八(1)=
[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,
s2八(2)=
[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160,
∵s2八(1)<s2八(2)
∴八(1)班的成績比較穩定.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=
x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).
![]()
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點,過點E作EF∥AD,與AC,DC分別交于點G,F,H為CG的中點,連接DE,EH,DH,FH.下列結論中結論正確的有( )
①EG=DF;
②∠AEH+∠ADH=180°;
③△EHF≌△DHC;
④若
,則S△EDH=13S△CFH .
![]()
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在圓心角為90°的扇形OAB中,點F、C在半徑OA、OB上,且OC=OF,以CF為邊作正方形CDEF,另兩頂點D、E在弧AB上,若扇形OAB的面積為25π,則正方形CDEF的面積為( )
![]()
A. 25 B. 40 C. 50 D.
π
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=15,BC=9,點P是線段AC上的一個動點,連接BP,將線段BP繞點P逆時針旋轉90°得到線段PD,連接AD,則線段AD的最小值是______.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數y=ax2+bx+c(a≠0)的圖象與函數y=x-
的圖象如圖所示,則下列結論:①ab>0;②c>-
;③a+b+c<-
;④方程ax2+(b-1)x+c+
=0有兩個不相等的實數根.其中正確的有( )
![]()
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一塊直角三角形的木板,它的一條直角邊AC長為1.5米,面積為1.5平方米.現在要把它加工成一個正方形桌面,甲、乙兩人的加工方法分別如圖(ⅰ)、(ⅱ)所示,記兩個正方形面積分別為S1、S2,請通過計算比較S1與S2的大小.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c的圖象如圖所示,對稱軸是直線x=-1,有以下結論:①abc>0;②4ac<b2;③2a+b=0;④a-b+c>0.其中正確的結論的個數是( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商人將進貨單價為
元的某種商品按
元銷售時,每天可賣出
件.現在他采用提高售價的辦法增加利潤,已知這種商品銷售單價每漲
元,銷售量就減少
件,那么他將售價每個定為________元時,才能使每天所賺的利潤最大,每天最大利潤是________元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com