【題目】合肥百大集團新進了40臺空調機,60臺電冰箱,計劃調配給下屬的甲、乙兩個連鎖店銷售,其中70臺給甲連鎖店,30臺給乙連鎖店.兩個連鎖店銷售這兩種電器每臺的利潤(元)如下表:
空調機 | 電冰箱 | |
甲連鎖店 | 200 | 170 |
乙連鎖店 | 160 | 150 |
設集團調配給甲連鎖店x臺空調機,集團賣出這100臺電器的總利潤為y(元).
(1)求y關于x的函數關系式,并求出x的取值范圍;
(2)為了促銷,集團決定僅對甲連鎖店的空調機每臺讓利a元銷售,其他的銷售利潤不變,并且讓利后每臺空調機的利潤仍然高于甲連鎖店銷售的每臺電冰箱的利潤,問該集團應該如何設計調配方案,才能使總利潤達到最大?
【答案】(1)y=20x+16800 (10≤x≤40,且
為整數);(2)當0<a<20時,x=40,即調配給甲連鎖店空調機40臺,電冰箱30臺,乙連鎖店空調0臺,電冰箱30臺;當a=20時,x的取值在10≤x≤40內的所有方案利潤相同; 當20<a<30時,x=10,即調配給甲連鎖店空調機10臺,電冰箱60臺,乙連鎖店空調30臺,電冰箱0臺.
【解析】試題分析:(1)首先設調配給甲連鎖店電冰箱(70-x)臺,調配給乙連鎖店空調機(40-x)臺,電冰箱60-(70-x)=(x-10)臺,列出不等式組求解即可;
(2)由(1)可得幾種不同的分配方案;依題意得出y與a的關系式,解出不等式方程后可得出使利潤達到最大的分配方案.
試題解析:(1)由題意可知,調配給甲連鎖店電冰箱(70-x)臺,
調配給乙連鎖店空調機(40-x)臺,電冰箱為60-(70-x)=(x-10)臺,
則y=200x+170(70-x)+160(40-x)+150(x-10),
即y=20x+16800.
∵
∴10≤x≤40.
∴y=20x+16800(10≤x≤40);
(2)由題意得:y=(200-a)x+170(70-x)+160(40-x)+150(x-10),
即y=(20-a)x+16800.
∵200-a>170,
∴a<30.
當0<a<20時,20-a>0,函數y隨x的增大而增大,
故當x=40時,總利潤最大,即調配給甲連鎖店空調機40臺,電冰箱30臺,乙連鎖店空調0臺,電冰箱30臺;
當a=20時,x的取值在10≤x≤40內的所有方案利潤相同;
當20<a<30時,20-a<0,函數y隨x的增大而減小,
故當x=10時,總利潤最大,即調配給甲連鎖店空調機10臺,電冰箱60臺,乙連鎖店空調30臺,電冰箱0臺.
科目:初中數學 來源: 題型:
【題目】在給定的條件中,能作出平行四邊形的是( )
A.以60cm為對角線,20cm、34cm為兩條鄰邊
B.以20cm、36cm為對角線,22cm為一條邊
C.以6cm為一條對角線,3cm、10cm為兩條鄰邊
D.以6cm、10cm為對角線,8cm為一條邊
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知⊙A的半徑AB長是5,點C在AB上,且AC=3,如果⊙C與⊙A有公共點,那么⊙C的半徑長r的取值范圍是( 。
A. r≥2 B. r≤8 C. 2<r<8 D. 2≤r≤8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:數軸上A、B兩點表示的有理數分別為a、b,且(a﹣1)2+|b+2|=0
(1)求(a+b)2017的值.
(2)數軸上的點C與A、B兩點的距離的和為7,求點C在數軸上表示的數c的值.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數形結合是一種重要的數學方法,如在化簡
時,當
在數軸上位于原點的右側時,
;當
在數軸上位于原點時,
;當
在數軸上位于原點的左側時,
.當
三個數在數軸上的位置如圖所示,試用這種方法解決下列問題,
(1)當![]()
(2)當![]()
(3)請根據
三個數在數軸上的位置, ![]()
(4)請根據
三個數在數軸上的位置,化簡:
. ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AM∥CN,點B為平面內一點,AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數量關系________;
(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com