【題目】如圖,已知AB=2,BF=8,BC=AE=6,CE=CF=7,則△CDF與四邊形ABDE的面積比值是( )
![]()
A. 1:1 B. 2:1 C. 1:2 D. 2:3
科目:初中數學 來源: 題型:
【題目】給出下面四個方程:x+y=2,xy=1,x=cos60°,y+2x=5
(1)任意兩個方程所組成的方程組是二元一次方程組的概率是多少?
(2)請找出一個解是整數的二元一次方程組,并直接寫出這個方程組的解.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某政府大力扶持大學生創業.李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.物價部門規定,這種護眼臺燈的銷售單價不得高于32元.銷售過程中發現,月銷售量y(件)與銷售單價x(元)之間的關系可近似的看作一次函數:y=﹣10x+n.
(1)當銷售單價x定為25元時,李明每月獲得利潤為w為1250元,則n=;
(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應定為多少元?
(3)當銷售單價定為多少元時,每月可獲得最大利潤?并求最大利潤為多少元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標系中,已知拋物線y=ax2+bx﹣8與x軸交于A,B兩點,與y軸交于點C,直線l經過坐標原點O,與拋物線的一個交點為D,與拋物線的對稱軸交于點E,連接CE,已知點A,D的坐標分別為(﹣2,0),(6,﹣8).![]()
(1)求拋物線的函數表達式,并分別求出點B和點E的坐標;
(2)試探究拋物線上是否存在點F,使△FOE≌△FCE?若存在,請直接寫出點F的坐標;若不存在,請說明理由;
(3)若點P是y軸負半軸上的一個動點,設其坐標為(0,m),直線PB與直線l交于點Q,試探究:當m為何值時,△OPQ是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某年級共有330名男生,為了解該年級男生1000米跑步成績(單位:分/秒)的情況,從中隨機抽取30名男生進行測試,獲得了他們的相關成績,并對數據進行整理、描述和分析.下面給出了部分信息.
a.1000米跑步的頻數分布表如下:
分組 | 3′17″<x≤3′ 37″ | 3′37″<x≤3′ 57″ | 3′ 57″<x≤4′ 17″ | 4′ 17″<x≤4′ 37″ | 4′ 37″<x≤4′ 57″ | 4′ 57″<x≤5′ 17″ |
頻數 | 10 | 9 | m | 2 | 2 | 1 |
注:3′37″即3分37秒
b.1000米跑步在3′37″<x≤3′57″這一組是:
3′39 ″ 3′42 ″ 3′45 ″ 3′45″ 3′50 ″ 3′52 ″ 3′53″ 3′55″ 3′57″
根據以上信息,回答下列問題:
(1)表中m的值為 ;
(2)根據表頻數分布表畫出相應的頻數分布直方圖.
(3)若男生1000米跑步成績等于或者優于3′52″,成績記為優秀.請估計全年級男生跑步成績達到優秀的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】補全下列解題過程:
如圖,OD是∠AOC的平分線,且∠BOC-∠AOB=40°,若∠AOC=120°,求∠BOD的度數.
![]()
解:∵OD是∠AOC的平分線,∠AOC=120°
∴∠DOC=
∠_______=______°.
∵∠BOC+∠_____=120°,∠BOC-∠AOB=40°
∴∠BOC=80°
∴∠BOD=∠BOC-∠______=______°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,下面四個結論:①CF=2AF;②tan∠CAD=
;
③DF=DC;④△AEF∽△CAB;⑤ S四邊形CDEF=
S△ABF ,其中正確的結論有( )![]()
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知α是銳角,且點A(
,a),B(sin30°+cos30°,b),C(﹣m2+2m﹣2,c)都在二次函數y=﹣x2+x+3的圖象上,那么a、b、c的大小關系是( )
A.a<b<c
B.a<c<b
C.b<c<a
D.c<b<a
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法中錯誤的是( )
A.平行四邊形的對角線互相平分
B.有兩對鄰角互補的四邊形為平行四邊形
C.對角線互相平分的四邊形是平行四邊形
D.一組對邊平行,一組對角相等的四邊形是平行四邊形
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com