【題目】如圖,已知二次函數(shù)y=ax2+
x+c(a≠0)的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),連接AB、AC.
(1)求出二次函數(shù)表達(dá)式;
(2)若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B、C重合),過(guò)點(diǎn)N作NM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求此時(shí)點(diǎn)N的坐標(biāo);
(3)若點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)求出此時(shí)點(diǎn)N的坐標(biāo).
![]()
【答案】(1) y=﹣
x2+
x+4;(2) (3,0);(3)N(﹣8,0)、(8﹣4
,0)、(3,0)、(8+4
,0).
【解析】
(1)根據(jù)待定系數(shù)法即可求得;
(2)設(shè)點(diǎn)N的坐標(biāo)為(n,0),則BN=n+2,過(guò)M點(diǎn)作MD⊥x軸于點(diǎn)D,根據(jù)三角形相似對(duì)應(yīng)邊成比例求得MD=
(n+2),構(gòu)建二次函數(shù),根據(jù)函數(shù)解析式求得即可;
(3)分別以A、C兩點(diǎn)為圓心,AC長(zhǎng)為半徑畫弧,與x軸交于三個(gè)點(diǎn),由AC的垂直平分線與x軸交于一個(gè)點(diǎn),即可求得點(diǎn)N的坐標(biāo).
解:(1)∵二次函數(shù)y=ax2+
x+c的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B、C,點(diǎn)C坐標(biāo)為(8,0),
∴
,
解得
.
∴拋物線表達(dá)式:
;
(2)令y=0,則
,
解得x1=8,x2=﹣2,
∴點(diǎn)B的坐標(biāo)為(﹣2,0).
又∵A(0,4),C(8,0),
∴
,
∴AB2+AC2=BC2,
∴∠BAC=90°.
∴AC⊥AB.
∵AC∥MN,
∴MN⊥AB.
設(shè)點(diǎn)N的坐標(biāo)為(n,0),則BN=n+2,
∵MN∥AC,
△BMN∽△BAC
∴
,
∴
,
,
,
∵S△AMN=
AMMN
=
=
,
當(dāng)n=3時(shí),△AMN面積最大是5,
∴N點(diǎn)坐標(biāo)為(3,0).
∴當(dāng)△AMN面積最大時(shí),N點(diǎn)坐標(biāo)為(3,0).
(3)由(2)知,AC=
,
①以A為圓心,以AC長(zhǎng)為半徑作圓,交x軸于N,此時(shí)N的坐標(biāo)為(﹣8,0),
②以C為圓心,以AC長(zhǎng)為半徑作圓,交x軸于N,此時(shí)N的坐標(biāo)為(
,0)或(
,0)
③作AC的垂直平分線交AC于P,交x軸于N,
∴△AOC∽△NPC.
∴
即
.
∴CN=5.
∴此時(shí)N的坐標(biāo)為(3,0),
綜上,若點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時(shí),點(diǎn)N的坐標(biāo)分別為(﹣8,0)、(
,0)、(3,0)、(
,0).
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形
的周長(zhǎng)是20,且
,
是
邊上的中點(diǎn),點(diǎn)
是
邊上的一個(gè)動(dòng)點(diǎn),將
沿
折疊得到
,連接
,
,當(dāng)
是直角三角形時(shí),
的長(zhǎng)是______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=-x2+(m-1) x+m (m為常數(shù)),其頂點(diǎn)為M.
(1)請(qǐng)判斷該函數(shù)的圖像與x軸公共點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
(2)當(dāng)-2≤m≤3時(shí),求該函數(shù)的圖像的頂點(diǎn)M縱坐標(biāo)的取值范圍;
(3)在同一坐標(biāo)系內(nèi)兩點(diǎn)A(-1,-1)、B(1,0),△ABM的面積為S,當(dāng)m為何值時(shí),S的面積最小?并求出這個(gè)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形
中,
對(duì)角線
交于點(diǎn)
為
上任意點(diǎn),
為
中點(diǎn),則
的最小值為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD,點(diǎn)M是邊BA延長(zhǎng)線上的動(dòng)點(diǎn)(不與點(diǎn)A重合),且AM<AB,△CBE由△DAM平移得到.若過(guò)點(diǎn)E作EH⊥AC,H為垂足,則有以下結(jié)論:①點(diǎn)M位置變化,使得∠DHC=60°時(shí),2BE=DM;②無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,都有DM=
HM;③無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,∠CHM一定大于135°.其中正確結(jié)論的序號(hào)為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】碑林書法社小組用的書法練習(xí)紙(毛邊紙可以到甲商店購(gòu)買,也可以到乙商店購(gòu)買已知兩商店的標(biāo)價(jià)都是每刀20元(每刀100張),但甲商店的優(yōu)惠條件是:若購(gòu)買不超過(guò)10刀,則按標(biāo)價(jià)買,購(gòu)買10以上,從第11刀開始按標(biāo)價(jià)的七折賣;乙商店的優(yōu)惠條件是:購(gòu)買一只9元的毛筆,從第一刀開始按標(biāo)價(jià)的八五折賣.購(gòu)買刀數(shù)為
(刀),在甲商店購(gòu)買所需費(fèi)用為
元,在乙商店購(gòu)買所需費(fèi)用為
元.
(1)寫出
、
與
之間的函數(shù)關(guān)系式.
(2)求在乙商店購(gòu)買所需總費(fèi)用小于甲商店購(gòu)買所需總費(fèi)用時(shí)
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將拋物線M:y=-
x2+2向左平移2個(gè)單位,再向上平移1個(gè)單位,得到拋物線M'.若拋物線M'與x軸交于A、B兩點(diǎn),M'的頂點(diǎn)記為C,則∠ACB=( )
A.45°B.60°C.90°D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線
經(jīng)過(guò)點(diǎn)A(3,0)和點(diǎn)B(0,2).
![]()
(1)求直線
的解析式;
(2)直線
與函數(shù)
的圖象交于點(diǎn)C(C在第二象限),若ΔCOB的面積與ΔAOB的面積相等,求出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
內(nèi)接于
,
,連接
;
![]()
(1)如圖1,連接
并延長(zhǎng)交
于點(diǎn)
,連接
,求證:
;
(2)如圖2,延長(zhǎng)
交
于點(diǎn)H,點(diǎn)F為BH上一點(diǎn),連接AF,若
,求證:
;
(3)在(2)的條件下,如圖3,點(diǎn)E為AB上一點(diǎn),點(diǎn)D為
上一點(diǎn),連接
、
,若
,若
,
,
,連接
,求線段
的長(zhǎng).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com