【題目】如圖,∠AOB=30°,∠AOB內有一定點P,且OP=12,在OA上有一點Q,OB上有一點R,若△PQR周長最小,則最小周長是_____
![]()
【答案】12
【解析】
先畫出圖形,作PM⊥OA與OA相交于M,并將PM延長一倍到E,即ME=PM.作PN⊥OB與OB相交于N,并將PN延長一倍到F,即NF=PN.連接EF與OA相交于Q,與OB相交于R,再連接PQ,PR,則△PQR即為周長最短的三角形.再根據線段垂直平分線的性質得出△PQR=EF,再根據三角形各角之間的關系判斷出△EOF的形狀即可求解.
設∠POA=θ,則∠POB=30°-θ,作PM⊥OA與OA相交于M,并將PM延長一倍到E,即ME=PM.
作PN⊥OB與OB相交于N,并將PN延長一倍到F,即NF=PN.
連接EF與OA相交于Q,與OB相交于R,再連接PQ,PR,則△PQR即為周長最短的三角形.
![]()
∵OA是PE的垂直平分線,
∴EQ=QP;
同理,OB是PF的垂直平分線,
∴FR=RP,
∴△PQR的周長=EF.
∵OE=OF=OP=12,且∠EOF=∠EOP+∠POF=2θ+2(30°-θ)=60°,
∴△EOF是正三角形,
∴EF=12,
即在保持OP=12的條件下△PQR的最小周長為12.
故答案為:12
科目:初中數學 來源: 題型:
【題目】思考:填空,并探究規律
如圖1,圖2,OA∥EC,OB∥ED,∠AOB=30°,則圖1中∠CED=_____°;圖2中∠CED=_____°;用一句話概括你發現的規律_________________.
應用:已知∠AOB=80°,∠CED=x°,OA∥CE,OB∥ED,則x的值為_________(直接寫出答案).
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知A(m,n),且滿足m-2+(n-2)2=0,過A作AB⊥y軸,垂足為B.
(1)求A點坐標;
(2)如圖1,分別以AB,AO為邊作等邊△ABC和△AOD,試判定線段AC和DC的數量關系和位置關系,并說明理由;
(3)如圖2,過A作AE⊥x軸,垂足為E,點F、G分別為線段OE、AE上的兩個動點 (不與端點重合),滿足∠FBG=45°,設OF=a,AG=b,FG=c,試探究
的值是 否為定值?如果是,直接寫出此定值:如果不是,請舉例說明.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,現有兩點P,Q分別從點A和點C同時出發,沿邊AB,CB向終點B移動.其中點P,Q的速度分別為2cm/s,1cm/s,且當其中一點到達終點時,另一點也隨之停止移動.設P,Q兩點移動時間為x s.![]()
(1)用含x的代數式表示BQ、BP的長度,并求x的取值范圍.
(2)設四邊形APQC的面積為y(cm2),求y與x的函數關系式?
(3)是否存在這樣的x,使得四邊形APQC的面積是△ABC面積的
?如果存在,求出x的值;不存在請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題探究:
【1】新知學習
⑴梯形的中位線:連接梯形兩腰中點的線段叫做梯形的中位線.
⑵梯形的中位線性質:梯形的中位線平行于兩底,并且等于兩底和的一半.
⑶形如分式
(m為常數,且m>0),若x>0,則
,并且有下列結論:
當x 逐漸增大時,分母x+2m逐漸增大,分式
的值逐漸減少并趨于0,但仍大于0.當x 逐漸減少時,分母x+2m逐漸減少,分式
的值逐漸增大并趨于
,即趨于
,但仍小于
.
【2】問題解決
如圖2,已知在梯形ABCD中,AD∥BC,AD<BC,E、F分別是AB、CD的中點.![]()
(1)設AD=7,BC=17,求
的值.
(2)設AD=a(a為正的常數),BC=x,請問:當BC的長不斷增大時,
的值能否大于或等于3,試證明你的結論.
(3)進一步猜想:任何一個梯形的中位線所分成的兩部分圖形的面積的比值所在的范圍是什么,并說明理由.![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】新學期開學,兩摞規格相同準備發放的數學課本整齊地疊放在講臺上,請根據圖中所給的數據信息,解答下列問題:
(1)一本數學課本的高度是多少厘米?
(2)講臺的高度是多少厘米?
(3)請寫出整齊疊放在桌面上的x本數學課本距離地面的高度的代數式(用含有x的代數式表示);
(4)若桌面上有56本同樣的數學課本,整齊疊放成一摞,從中取走18本后,求余下的數學課本距離地面的高度.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,E,F分別是矩形ABCD的邊AD,AB上的點,若EF=EC,且EF⊥EC. ![]()
(1)求證:△AEF≌△DCE;
(2)若CD=1,求BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內離杯底4cm的點C
處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達蜂蜜的最
短距離為 ▲ cm.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,DE是△ABC的中位線,F是DE的中點,CF的延長線交AB于點G,若△CEF的面積為12cm2,則S△DGF的值為( )
![]()
A.4cm2 B.6cm2 C.8cm2 D.9cm2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com