【題目】在我市迎接奧運(yùn)圣火的活動中,某校教學(xué)樓上懸掛著宣傳條幅DC,小麗同學(xué)在點(diǎn)A處,測得條幅頂端D的仰角為30°,再向條幅方向前進(jìn)10米后,又在點(diǎn)B處測得條幅頂端D的仰角為45°,已知測點(diǎn)A、B和C離地面高度都為1.44米,求條幅頂端D點(diǎn)距離地面的高度.(計算結(jié)果精確到0.1米,參考數(shù)據(jù):
.)
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC內(nèi)接于⊙O,連接CO并延長交AB于點(diǎn)E,交⊙O于點(diǎn)D,滿足∠BEC=3∠ACD.
![]()
(1)如圖1,求證:AB=AC;
(2)如圖2,連接BD,點(diǎn)F為弧BD上一點(diǎn),連接CF,弧CF=弧BD,過點(diǎn)A作AG⊥CD,垂足為點(diǎn)G,求證:CF+DG=CG;
(3)如圖3,在(2)的條件下,點(diǎn)H為AC上一點(diǎn),分別連接DH,OH,OH⊥DH,過點(diǎn)C作CP⊥AC,交⊙O于點(diǎn)P,OH:CP=1:
,CF=12,連接PF,求PF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,對角線互相垂直的四邊形叫做垂美四邊形.
![]()
(1)概念理解:如圖2,在四邊形
中,
,
,問四邊形
是垂美四邊形嗎?請說明理由;
(2)性質(zhì)探究:如圖1,四邊形
的對角線
、
交于點(diǎn)
,
.試證明:
;
(3)解決問題:如圖3,分別以
的直角邊
和斜邊
為邊向外作正方形
和正方形
,連結(jié)
、
、
.已知
,
,求
的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地有甲、乙兩棟建筑物,小明于乙樓樓頂A點(diǎn)處看甲樓樓底D點(diǎn)處的俯角為45°,走到乙樓B點(diǎn)處看甲樓樓頂E點(diǎn)處的俯角為60°,已知AB=6m,DE=10m.求乙樓的高度AC的長.(參考數(shù)據(jù):
,
,精確到0.1m.)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AC為直徑,
,DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)判斷直線ED與⊙O的位置關(guān)系,并說明理由;
(3)若CE=2,AC=8,陰影部分的面積為 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在
中,
.半徑為
的圓
與邊
相交于點(diǎn)
與邊
相交于點(diǎn)
連結(jié)
并延長,與線段
的延長線交于點(diǎn)
.
![]()
(1)當(dāng)
時,連結(jié)
若
與
相似,求
的長;
(2)若
求
的正切值;
(3)若
,設(shè)
的周長為
,求
關(guān)于
的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC內(nèi)接于⊙P,AB是⊙P的直徑,A(﹣1,0)、C(3,2
),BC的延長線交y軸于點(diǎn)D,點(diǎn)F是y軸上的一動點(diǎn),連接FC并延長交x軸于點(diǎn)E.
(1)求⊙P的半徑;
(2)當(dāng)∠A=∠DCF時,求證:CE是⊙P的切線.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=
x+2的圖象與y軸交于A點(diǎn),與x軸交于B點(diǎn),⊙P的半徑為
,其圓心P在x軸上運(yùn)動.
![]()
(1)如圖1,當(dāng)圓心P的坐標(biāo)為(1,0)時,求證:⊙P與直線AB相切;
(2)在(1)的條件下,點(diǎn)C為⊙P上在第一象限內(nèi)的一點(diǎn),過點(diǎn)C作⊙P的切線交直線AB于點(diǎn)D,且∠ADC=120°,求D點(diǎn)的坐標(biāo);
(3)如圖2,若⊙P向左運(yùn)動,圓心P與點(diǎn)B重合,且⊙P與線段AB交于E點(diǎn),與線段BO相交于F點(diǎn),G點(diǎn)為弧EF上一點(diǎn),直接寫出
AG+OG的最小值 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,點(diǎn)D在BC上,且CD=3cm.動點(diǎn)P,Q同時從點(diǎn)C出發(fā),均以1cm/s的速度運(yùn)動,其中點(diǎn)P沿CA向終點(diǎn)A運(yùn)動;點(diǎn)Q沿CB向終點(diǎn)B運(yùn)動.過點(diǎn)P作PE∥BC,分別交AD,AB于點(diǎn)E,F,設(shè)動點(diǎn)Q運(yùn)動的時間為t秒.
(1)求DQ的長(用含t的代數(shù)式表示);
(2)以點(diǎn)Q,D,F,E為頂點(diǎn)圍成的圖形面積為S,求S與t之間的函數(shù)關(guān)系式;
(3)連接PQ,若點(diǎn)M為PQ中點(diǎn),在整個運(yùn)動過程中,直接寫出點(diǎn)M運(yùn)動的路徑長.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com