【題目】如圖,A(0,4)是直角坐標系y軸上一點,動點P從原點O出發,沿x軸正半軸運動,速度為每秒1個單位長度,以P為直角頂點在第一象限內作等腰Rt△APB.設P點的運動時間為t秒.
![]()
(1)若AB//x軸,求t的值;
(2)當t=3時,坐標平面內有一點M(不與A重合),使得以M、P、B為頂點的三角形和△ABP全等,請求出點M的坐標;
【答案】(1)4;(2) (4,7)或(10,-1)或(6,-4)或(0,4).
【解析】
(1)由AB∥x軸,可找出四邊形ABCO為長方形,再根據△APB為等腰三角形可得知∠OAP=45°,從而得出△AOP為等腰直角三角形,由此得出結論;
(2)由全等三角形的性質和等腰三角形的性質可得出結論,注意分類討論.
解:(1)過點B作BC⊥x軸于點C,如圖所示.![]()
∵AO⊥x軸,BC⊥x軸,且AB∥x軸,
∴四邊形ABCO為長方形,
∴AO=BC=4.
∵△APB為等腰直角三角形,
∴AP=BP,∠PAB=∠PBA=45°,
∴∠OAP=90°-∠PAB=45°,
∴△AOP為等腰直角三角形,
∴OA=OP=4.
∴t=4÷1=4(秒),
故t的值為4.
(2)當t=3時,OP=3.
∵OA=4,
∴由勾股定理,得
AP=
=5.
∴AP=PB=5,AB=5
,
∴當△MPB≌△ABP時,此時四邊形APBM1是正方形,四邊形APBM3是平行四邊形,易得M1(4,7)、M3(10,-1);
當△MPB≌△APB時,此時點M2與點A關于點P對稱,易得M2(6,-4).
當兩個三角形重合時,此時符合條件的點M的坐標是(0,4);
綜上所述,點M的坐標為(4,7)或(10,-1)或(6,-4)或(0,4);
![]()
科目:初中數學 來源: 題型:
【題目】為增強公民節水意識,合理利用水資源,某市采用“階梯收費”,標準如下表:
用水量 | 單價 |
單價不超過 | 2元 |
超過 | 4元 |
超出 |
|
如:某用戶
月份用水
,則應繳水費:
(元)
(1)某用戶
月用水
應繳水費____________元;
(2)已知某用戶
月份繳水費
元,求該用戶
月份的用水量;
(3)如果該用戶
、
月份共用水
(
月份用水量超過
月份用水量),共交水費
元,則該戶居民
、
月份各用水多少
?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點C為△ABD外接圓上的一動點(點C不在
上,且不與點B,D重合),∠ACB=∠ABD=45°.
(1)求證:BD是該外接圓的直徑;
(2)連結CD,求證:
AC=BC+CD.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點A、B在數軸上分別表示實數a、b,A、B兩點之間的距離表示為AB,在數軸上A、B兩點之間的距離AB=|a﹣b|.
利用數軸,根據數形結合思想,回答下列問題:
![]()
(1)已知|x|=3,則x的值是 .
(2)數軸上表示2和6兩點之間的距離是 ,數軸上表示1和﹣2的兩點之間的距離為 ;
(3)數軸上表示x和1兩點之間的距離為 ,數軸上表示x和﹣3兩點之間的距離為
(4)若x表示一個實數,且﹣5<x<3,化簡|x﹣3|+|x+5|= ;
(5)|x+3|+|x﹣4|的最小值為 ,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值為 .
(6)|x+1|﹣|x﹣3|的最大值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1),平面直角坐標系中,點A、B分別在x、y軸上,點B的坐標為(0,1),∠BAO=30°.
![]()
(1)求AB的長度;
(2)以AB為一邊作等邊△ABE,作OA的垂直平分線MN交AB的垂線AD于點,求證:BD=OE;
(3)在(2)的條件下,連接DE交AB于F,求證:F為DE的中點.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對每個數位數字均不為零且互不相等的一個三位正整數
,若將
的十位數字與百位數字交換位置,得到一個新的三位數
,我們稱
為
的“置換數”,如:
的“置效為“
”;若由
的百位、十位、個位上的數字任選兩個組成一個新的兩位數,所有新的兩位數之和記為
,我們稱
為
的“行生數”.如
:因為
所以
的“衍生數”為
.
(1)直接寫出
的“置換數”,并求
的“衍生數”;
(2)對每個數位數字均不為零且互不相等的一個三位正整數
,設十位數字為
,若
的“衍生數”與
的“置換數”之差為
,求
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,C是AB上一點,點D,E分別在AB兩側,AD∥BE,且AD=BC,BE=AC.
![]()
(1)求證:CD=CE;
(2)連接DE,交AB于點F,猜想△BEF的形狀,并給予證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,已知點C(1,0),直線
與兩坐標軸分別交于A,B兩點,D,E分別是線段AB,OA上的動點,則△CDE的周長的最小值是( )
![]()
A.
B.10
C.
D.12
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com