【題目】已知2a=5,2b=3,求2a+b+3的值.
科目:初中數學 來源: 題型:
【題目】已知∠EOF,求作∠E′O′F′,使得∠E′O′F′=∠EOF,則作法的合理順序是【 】
①以點C′為圓心,以CD的長為半徑畫弧,交前面的弧于點D′;②以點O為圓心,以任意長為半徑畫弧,交OE于點C,交OF于點D;③作射線O′E′;④以點O′為圓心,以OC的長為半徑畫弧,交O′E′于點C′;⑤過點D′作射線O′F′,∠E′O′F′就是所求作的角.
A. ③②①④⑤ B. ③②④①⑤
C. ②④③①⑤ D. ②③①④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于任意三點A,B,C,給出如下定義:如果矩形的任何一條邊均與某條坐標軸平行,且A,B,C三點都在矩形的內部或邊界上,則稱該矩形為點A,B,C的覆蓋矩形.點A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點A,B,C的最優覆蓋矩形.例如,下圖中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是點A,B,C的覆蓋矩形,其中矩形AB3C3D3是點A,B,C的最優覆蓋矩形.
![]()
(1)已知A(
2,3),B(5,0),C(
,
2).
①當
時,點A,B,C的最優覆蓋矩形的面積為 ;
②若點A,B,C的最優覆蓋矩形的面積為40,則t的值為 ;
(2)已知點D(1,1),點E(
,
),其中點E是函數
的圖像上一點,⊙P是點O,D,E的一個面積最小的最優覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD中,
(1)若半徑為1的⊙O經過點A、B、D,且∠A=60°,求此時菱形的邊長;
(2)若點P為AB上一點,把菱形ABCD沿過點P的直線a折疊,使點D落在BC邊上,利用無刻度的直尺和圓規作出直線a.(保留作圖痕跡,不必說明作法和理由)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】集合M={x|1<x+1≤3},N={x|x2﹣2x﹣3>0},則(RM)∩(RN)等于( )
A.(﹣1,3)
B.(﹣1,0)∪(2,3)
C.(﹣1,0]∪[2,3)
D.[﹣1,0]∪(2,3]
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com