【題目】在實(shí)驗(yàn)中我們常常采用利用計(jì)算機(jī)在平面直角坐標(biāo)系中畫出拋物線
和直線
,利用兩圖象交點(diǎn)的橫坐標(biāo)來求一元二次方程
的解,也可以在平面直角坐標(biāo)系中畫出拋物線
和直線
,用它們交點(diǎn)的橫坐標(biāo)來求該方程的解.所以求方程
的近似解也可以利用熟悉的函數(shù)________和________的圖象交點(diǎn)的橫坐標(biāo)來求得.
【答案】
; ![]()
【解析】
根據(jù)在平面直角坐標(biāo)系中畫出拋物線y=x2和直線y=-x+3,利用兩圖象交點(diǎn)的橫坐標(biāo)來求一元二次方程x2+x-3=0的解,進(jìn)而得出方程
x2+3=0的近似解也可以利用熟悉的函數(shù)的交點(diǎn)得出.
解:∵利用計(jì)算機(jī)在平面直角坐標(biāo)系中畫出拋物線y=x2和直線y=-x+3,利用兩圖象交點(diǎn)的橫坐標(biāo)來求一元二次方程x2+x-3=0的解,
也可在平面直角坐標(biāo)系中畫出拋物線y=x2-3和直線y=-x,用它們交點(diǎn)的橫坐標(biāo)來求該方程的解.
∴求方程
x2+3=0的近似解也可以利用熟悉的函數(shù):y=
和y=x2-3的圖象交點(diǎn)的橫坐標(biāo)來求得.
故答案為:y=
,y=x2-3.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是邊長為4的正方形,E為AB的中點(diǎn),將△ADE繞點(diǎn)D沿逆時(shí)針方向旋轉(zhuǎn)后得到△DCF,連接EF,則EF的長為( )
![]()
A. 2
B. 2
C. 2
D. 2![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=120°,OP平分∠AOB,且OP=3,若點(diǎn)M,N分別在OA,OB上,ΔPMN為等邊三角形,則滿足上述條件的△PMN有中( )
![]()
A.1個(gè)B.2個(gè)C.3個(gè)D.3個(gè)以上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,∠ABC=30°,AC=3,動(dòng)點(diǎn)D從點(diǎn)A出發(fā),在AB邊上以每秒1個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),連結(jié)CD,作點(diǎn)A關(guān)于直線CD的對(duì)稱點(diǎn)E,設(shè)點(diǎn)D運(yùn)動(dòng)時(shí)間為t(s).
![]()
(1)若△BDE是以BE為底的等腰三角形,求t的值;
(2)若△BDE為直角三角形,求t的值;
(3)當(dāng)S△BCE≤
時(shí),求所有滿足條件的t的取值范圍(所有數(shù)據(jù)請保留準(zhǔn)確值,參考數(shù)據(jù):tan15°=2﹣
).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對(duì)于已知拋物線
,給出如下信息:
;
;
;
.其中錯(cuò)誤的有( )
![]()
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線
與
軸交于點(diǎn)
,
,與
軸交于點(diǎn)
,直線
經(jīng)過
,
兩點(diǎn).
求拋物線的解析式;
在
上方的拋物線上有一動(dòng)點(diǎn)
.
①如圖
,當(dāng)點(diǎn)
運(yùn)動(dòng)到某位置時(shí),以
,
為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線上,求出此時(shí)點(diǎn)
的坐標(biāo);
②如圖
,過點(diǎn)
,
的直線
交
于點(diǎn)
,若
,求
的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=( )
![]()
A. 75° B. 80° C. 85° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)
圖象的一部分,圖象過點(diǎn)A(-3,0),對(duì)稱軸為直線x=﹣1,給出四個(gè)結(jié)論:①c>0;②若點(diǎn)B(-1.5,y1)、C(-2.5,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2;③2a﹣b=0;④
<0.其中正確結(jié)論的個(gè)數(shù)是( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操作發(fā)現(xiàn):如圖①,點(diǎn)D是等邊△ABC的邊AB上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接CD,以CD為邊在CD上方作等邊△CDE,連接AE,則AE與BD有怎樣的數(shù)量關(guān)系?說明理由.
(2)類比猜想:如圖②,若點(diǎn)D是等邊△ABC的邊BA延長線上一動(dòng)點(diǎn),連接CD,以CD為邊在CD上方作等邊△CDE,連接AE,請直接寫出AE與BD滿足的數(shù)量關(guān)系,不必說明理由;
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com